Suppr超能文献

上转换发光控制的 DNA 计算用于时空分辨、多重分子成像。

Upconversion Luminescence-Controlled DNA Computation for Spatiotemporally Resolved, Multiplexed Molecular Imaging.

机构信息

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.

Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Anal Chem. 2021 Feb 2;93(4):2500-2509. doi: 10.1021/acs.analchem.0c04531. Epub 2021 Jan 19.

Abstract

DNA-based molecular circuits able to perform complex information processing in biological systems are highly desirable. However, conventional DNA circuits are constitutively always in an ON state and immediately operate when they meet the biomolecular inputs, precluding precise molecular computation at a desired time and in a desired site. In this work, we report a conceptual methodology for the construction of photonic nanocircuits that enable DNA molecular computation in vitro and in vivo with high spatial precision. Upon remote activation by spatially restricted NIR-light input, two types of cancer biomarker inputs can sequentially trigger conformational changes of the DNA circuit through a structure-switching aptamer and toehold-mediated strand exchange, leading to release of a signaling output. Of note, the NIR-light-gated nanocircuit allows for intended control over the specific timing and location of DNA computation, providing spatial and temporal capabilities for multiplexed imaging. Furthermore, an OR-AND-gated nanocircuit of higher complexity was designed to illustrate the versatility of our approach. The present work illustrates the potential of the use of upconversion nanotechnology as a regulatory tool for spatial and temporal control of DNA computation in cells and animals.

摘要

基于 DNA 的分子电路能够在生物系统中执行复杂的信息处理,这是非常理想的。然而,传统的 DNA 电路通常总是处于开启状态,一旦遇到生物分子输入,就会立即进行操作,从而排除了在期望的时间和期望的位置进行精确分子计算的可能性。在这项工作中,我们报告了一种构建光子纳米电路的概念性方法,该方法可在体外和体内实现具有高空间精度的 DNA 分子计算。通过空间受限的近红外光输入进行远程激活后,两种类型的癌症生物标志物输入可以通过结构切换适体和链置换介导的碱基对互补序列依次触发 DNA 电路的构象变化,从而释放信号输出。值得注意的是,近红外光门控纳米电路允许对 DNA 计算的特定时间和位置进行预期控制,为多路复用成像提供了空间和时间能力。此外,还设计了一种更复杂的 OR-AND 门控纳米电路,以说明我们方法的多功能性。本工作说明了上转换纳米技术作为在细胞和动物中对 DNA 计算进行时空控制的调节工具的潜在应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验