Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Functional Molecules & Polymers, Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, #07-01/02, Singapore, 138665, Singapore.
ChemSusChem. 2021 Mar 22;14(6):1545-1553. doi: 10.1002/cssc.202002594. Epub 2021 Feb 9.
The deoxydehydration of carbohydrates represents a key target to leverage renewable biomass resources chemically. Using a vanadium(V)-based catalyst, it was possible to directly deoxydehydrate cyclic trans-diol substrates. Accompanying mechanistic characterisation of this process by density functional calculations pointed to an energetically tractable route for deoxydehydration of cyclic trans-diol substrates involving stepwise cleavage of the diol C-O bonds via the triplet state; experimentally, this was supported by light dependence of the reaction. Calculations also indicated that cyclic cis-diols and a linear diol substrate could additionally proceed by a concerted singlet DODH mechanism. This work potentially opens a new and cost-effective way to efficiently convert carbohydrates of trans-diol stereochemistry into alkenes.
碳水化合物的脱氧脱水是化学利用可再生生物质资源的一个关键目标。使用基于钒(V)的催化剂,可以直接脱氧脱水环状反式二醇底物。通过密度泛函计算对该过程进行伴随的机理表征表明,对于涉及通过三重态逐步裂解二醇 C-O 键的环状反式二醇底物的脱氧脱水,存在一条能量上可接近的途径;实验上,这得到了反应对光的依赖性的支持。计算还表明,环状顺式二醇和线性二醇底物还可以通过协同的单重态 DODH 机制进行。这项工作有可能为高效地将具有反式二醇立体化学的碳水化合物转化为烯烃开辟一条新的、具有成本效益的途径。