Suppr超能文献

网络中半柔性细丝的波动起伏动力学

Dynamics of undulatory fluctuations of semiflexible filaments in a network.

作者信息

Kernes Jonathan, Levine Alex J

机构信息

Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA.

Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA.

出版信息

Phys Rev E. 2020 Dec;102(6-1):062406. doi: 10.1103/PhysRevE.102.062406.

Abstract

We study the dynamics of a single semiflexible filament coupled to a Hookean spring at its boundary. The spring produces a fluctuating tensile force on the filament, the value of which depends on the filament's instantaneous end-to-end length. The spring thereby introduces a nonlinearity, which mixes the undulatory normal modes of the filament and changes their dynamics. We study these dynamics using the Martin-Siggia-Rose-Janssen-De Dominicis formalism, and compute the time-dependent correlation functions of transverse undulations and of the filament's end-to-end distance. The relaxational dynamics of the modes below a characteristic wavelength sqrt[κ/τ_{R}], set by the filament's bending modulus κ and spring-renormalized tension τ_{R}, are changed by the boundary spring. This occurs near the crossover frequency between tension- and bending-dominated modes of the system. The boundary spring can be used to represent the linear elastic compliance of the rest of the filament network to which the filament is cross linked. As a result, we predict that this nonlinear effect will be observable in the dynamical correlations of constituent filaments of networks and in the networks' collective shear response. The system's dynamic shear modulus is predicted to exhibit the well-known crossover with increasing frequency from ω^{1/2} to ω^{3/4}, but the inclusion of the network's compliance in the analysis of the individual filament dynamics shifts this transition to a higher frequency.

摘要

我们研究了一根半柔性细丝在其边界处与胡克弹簧耦合的动力学。弹簧在细丝上产生一个波动的拉力,其值取决于细丝的瞬时端到端长度。弹簧因此引入了非线性,这种非线性混合了细丝的波动法向模式并改变了它们的动力学。我们使用Martin-Siggia-Rose-Janssen-De Dominicis形式体系来研究这些动力学,并计算横向波动和细丝端到端距离的时间相关函数。由细丝的弯曲模量κ和弹簧重整化张力τ_R设定的低于特征波长sqrt[κ/τ_R]的模式的弛豫动力学,会因边界弹簧而改变。这种情况发生在系统中张力主导模式和弯曲主导模式之间的交叉频率附近。边界弹簧可用于表示细丝交联到的其余细丝网络的线性弹性顺应性。因此,我们预测这种非线性效应将在网络组成细丝的动力学相关性以及网络的集体剪切响应中观察到。预计系统的动态剪切模量会随着频率增加呈现出从ω^{1/2}到ω^{3/4}的众所周知的交叉,但在分析单个细丝动力学时纳入网络的顺应性会将这种转变转移到更高的频率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验