Department of Chemistry & Biochemistry, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States.
Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, United Kingdom.
J Chem Theory Comput. 2022 Aug 9;18(8):4865-4878. doi: 10.1021/acs.jctc.2c00318. Epub 2022 Jul 27.
Mechanochemical simulations of actomyosin networks are traditionally based on one-dimensional models of actin filaments having zero width. Here, and in the follow up paper (, DOI 10.48550/arXiv.2203.01284), approaches are presented for more efficient modeling that incorporates stretching, shearing, and twisting of actin filaments. Our modeling of a semiflexible filament with a small but finite width is based on the Cosserat theory of elastic rods, which allows for six degrees of freedom at every point on the filament's backbone. In the variational models presented in this paper, a small and discrete set of parameters is used to describe a smooth filament shape having all degrees of freedom allowed in the Cosserat theory. Two main approaches are introduced: one where polynomial spline functions describe the filament's configuration, and one in which geodesic curves in the space of the configurational degrees of freedom are used. We find that in the latter representation the strain energy function can be calculated without resorting to a small-angle expansion, so it can describe arbitrarily large filament deformations without systematic error. These approaches are validated by a dynamical model of a Cosserat filament, which can be further extended by using multiresolution methods to allow more detailed monomer-based resolution in certain parts of the actin filament, as introduced in the follow up paper. The presented framework is illustrated by showing how torsional compliance in a finite-width filament can induce broken chiral symmetry in the structure of a cross-linked bundle.
肌动球蛋白网络的机械化学模拟传统上基于具有零宽度的一维肌动蛋白丝模型。在这里,以及在后续论文(DOI:10.48550/arXiv.2203.01284)中,提出了更有效的建模方法,该方法纳入了肌动蛋白丝的拉伸、剪切和扭曲。我们对具有小但有限宽度的半柔性丝的建模基于弹性杆的科萨里理论,该理论允许在丝的骨架上的每一点有六个自由度。在本文提出的变分模型中,使用小而离散的一组参数来描述具有科萨里理论中允许的所有自由度的光滑丝形状。引入了两种主要方法:一种是多项式样条函数描述丝的形状,另一种是在构形自由度空间中使用测地线曲线。我们发现,在后一种表示中,可以不进行小角度展开来计算应变能函数,因此可以描述任意大的丝变形而没有系统误差。通过科萨里丝的动力学模型验证了这些方法,如后续论文中介绍的,可以通过使用多分辨率方法进一步扩展该模型,以便在肌动蛋白丝的某些部分允许更详细的基于单体的分辨率。通过展示有限宽度丝中的扭转顺应性如何在交联束的结构中诱导破缺手征对称性,说明了所提出的框架。