Suppr超能文献

不同环境压力下的巨型等离子体气泡成核

Giant plasmonic bubbles nucleation under different ambient pressures.

作者信息

Zeng Binglin, Wang Yuliang, Zaytsev Mikhail E, Xia Chenliang, Zandvliet Harold J W, Lohse Detlef

机构信息

School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, China.

Physics of Fluids Group, Department of Applied Physics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

出版信息

Phys Rev E. 2020 Dec;102(6-1):063109. doi: 10.1103/PhysRevE.102.063109.

Abstract

Water-immersed gold nanoparticles irradiated by a laser can trigger the nucleation of plasmonic bubbles after a delay time of a few microseconds [Wang et al., Proc. Natl. Acad. Sci. USA 122, 9253 (2018)]. Here we systematically investigated the light-vapor conversion efficiency, η, of these plasmonic bubbles as a function of the ambient pressure. The efficiency of the formation of these initial-phase and mainly water-vapor containing bubbles, which is defined as the ratio of the energy that is required to form the vapor bubbles and the total energy dumped in the gold nanoparticles before nucleation of the bubble by the laser, can be as high as 25%. The amount of vaporized water first scales linearly with the total laser energy dumped in the gold nanoparticles before nucleation, but for larger energies the amount of vaporized water levels off. The efficiency η decreases with increasing ambient pressure. The experimental observations can be quantitatively understood within a theoretical framework based on the thermal diffusion equation and the thermal dynamics of the phase transition.

摘要

激光照射下的水浸金纳米颗粒在几微秒的延迟时间后可引发等离子体气泡的成核[Wang等人,《美国国家科学院院刊》122, 9253 (2018)]。在此,我们系统地研究了这些等离子体气泡的光 - 蒸汽转换效率η随环境压力的变化。这些初始阶段且主要含水蒸气的气泡的形成效率,定义为形成蒸汽气泡所需的能量与气泡成核前激光注入金纳米颗粒的总能量之比,可高达25%。汽化水的量最初与气泡成核前注入金纳米颗粒的激光总能量呈线性关系,但对于更大的能量,汽化水的量趋于平稳。效率η随环境压力的增加而降低。在基于热扩散方程和相变热动力学的理论框架内,可以定量地理解这些实验观察结果。

相似文献

1
Giant plasmonic bubbles nucleation under different ambient pressures.
Phys Rev E. 2020 Dec;102(6-1):063109. doi: 10.1103/PhysRevE.102.063109.
2
Giant and explosive plasmonic bubbles by delayed nucleation.
Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):7676-7681. doi: 10.1073/pnas.1805912115. Epub 2018 Jul 11.
3
Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air.
J Phys Chem C Nanomater Interfaces. 2019 Sep 26;123(38):23586-23593. doi: 10.1021/acs.jpcc.9b05374. Epub 2019 Aug 28.
4
Vapor and Gas-Bubble Growth Dynamics around Laser-Irradiated, Water-Immersed Plasmonic Nanoparticles.
ACS Nano. 2017 Feb 28;11(2):2045-2051. doi: 10.1021/acsnano.6b08229. Epub 2017 Jan 20.
5
Plasmonic Bubble Nucleation in Binary Liquids.
J Phys Chem C Nanomater Interfaces. 2020 Jan 30;124(4):2591-2597. doi: 10.1021/acs.jpcc.9b10064. Epub 2019 Dec 31.
6
Submegahertz Nucleation of Plasmonic Vapor Microbubbles near a Solid Vertical Boundary.
Phys Rev Lett. 2024 Aug 9;133(6):064001. doi: 10.1103/PhysRevLett.133.064001.
7
Optically Driven Gold Nanoparticles Seed Surface Bubble Nucleation in Plasmonic Suspension.
Nano Lett. 2021 Jul 14;21(13):5485-5492. doi: 10.1021/acs.nanolett.0c04913. Epub 2021 May 3.
8
Effect of entropy on the nucleation of cavitation bubbles in water under tension.
J Chem Phys. 2016 Dec 7;145(21):211918. doi: 10.1063/1.4964327.
9
Optical excitation and detection of vapor bubbles around plasmonic nanoparticles.
Opt Express. 2009 Feb 16;17(4):2538-56. doi: 10.1364/oe.17.002538.
10
Molecular mechanism for cavitation in water under tension.
Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):13582-13587. doi: 10.1073/pnas.1608421113. Epub 2016 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验