Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People's Republic of China;
Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics and J. M. Burgers Centre for Fluid Mechanics, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands.
Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):7676-7681. doi: 10.1073/pnas.1805912115. Epub 2018 Jul 11.
When illuminated by a laser, plasmonic nanoparticles immersed in water can very quickly and strongly heat up, leading to the nucleation of so-called plasmonic vapor bubbles. While the long-time behavior of such bubbles has been well-studied, here, using ultrahigh-speed imaging, we reveal the nucleation and early life phase of these bubbles. After some delay time from the beginning of the illumination, a giant bubble explosively grows, and collapses again within 200 μs (bubble life phase 1). The maximal bubble volume [Formula: see text] remarkably increases with decreasing laser power, leading to less total dumped energy E. This dumped energy shows a universal linear scaling relation with [Formula: see text], irrespective of the gas concentration of the surrounding water. This finding supports that the initial giant bubble is a pure vapor bubble. In contrast, the delay time does depend on the gas concentration of the water, as gas pockets in the water facilitate an earlier vapor bubble nucleation, which leads to smaller delay times and lower bubble nucleation temperatures. After the collapse of the initial giant bubbles, first, much smaller oscillating bubbles form out of the remaining gas nuclei (bubble life phase 2). Subsequently, the known vaporization dominated growth phase takes over, and the bubble stabilizes (life phase 3). In the final life phase 4, the bubble slowly grows by gas expelling due to heating of the surrounding. Our findings on the explosive growth and collapse during the early life phase of a plasmonic vapor bubble have strong bearings on possible applications of such bubbles.
当被激光照射时,沉浸在水中的等离子体纳米粒子可以非常迅速和强烈地加热,导致所谓的等离子体蒸汽泡的成核。虽然这种气泡的长时间行为已经得到了很好的研究,但在这里,我们使用超高速成像技术揭示了这些气泡的成核和早期生命阶段。在照明开始后的一段时间延迟后,一个巨大的气泡爆炸式地生长,并在 200μs 内再次坍塌(气泡生命阶段 1)。最大气泡体积 [Formula: see text]随着激光功率的降低而显著增加,导致总释放能量 E 减少。这个释放能量与 [Formula: see text]表现出普遍的线性标度关系,与周围水的气体浓度无关。这一发现支持初始的巨大气泡是一个纯蒸汽泡。相比之下,延迟时间确实取决于水的气体浓度,因为水中的气体口袋有利于更早的蒸汽泡成核,从而导致更小的延迟时间和更低的气泡成核温度。在初始巨大气泡的坍塌之后,首先,由剩余气体核形成的更小的振荡气泡(气泡生命阶段 2)。随后,已知的由蒸发主导的生长阶段接管,气泡稳定(生命阶段 3)。在最终的生命阶段 4 中,由于周围的加热,气泡通过气体排出而缓慢生长。我们对等离子体蒸汽泡早期生命阶段的爆炸式生长和坍塌的发现,对这种气泡的可能应用有重要影响。