Suppr超能文献

延迟成核引发的巨型和爆炸等离子体泡。

Giant and explosive plasmonic bubbles by delayed nucleation.

机构信息

Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, People's Republic of China;

Physics of Fluids Group, Max Planck Center Twente for Complex Fluid Dynamics and J. M. Burgers Centre for Fluid Mechanics, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):7676-7681. doi: 10.1073/pnas.1805912115. Epub 2018 Jul 11.

Abstract

When illuminated by a laser, plasmonic nanoparticles immersed in water can very quickly and strongly heat up, leading to the nucleation of so-called plasmonic vapor bubbles. While the long-time behavior of such bubbles has been well-studied, here, using ultrahigh-speed imaging, we reveal the nucleation and early life phase of these bubbles. After some delay time from the beginning of the illumination, a giant bubble explosively grows, and collapses again within 200 μs (bubble life phase 1). The maximal bubble volume [Formula: see text] remarkably increases with decreasing laser power, leading to less total dumped energy E. This dumped energy shows a universal linear scaling relation with [Formula: see text], irrespective of the gas concentration of the surrounding water. This finding supports that the initial giant bubble is a pure vapor bubble. In contrast, the delay time does depend on the gas concentration of the water, as gas pockets in the water facilitate an earlier vapor bubble nucleation, which leads to smaller delay times and lower bubble nucleation temperatures. After the collapse of the initial giant bubbles, first, much smaller oscillating bubbles form out of the remaining gas nuclei (bubble life phase 2). Subsequently, the known vaporization dominated growth phase takes over, and the bubble stabilizes (life phase 3). In the final life phase 4, the bubble slowly grows by gas expelling due to heating of the surrounding. Our findings on the explosive growth and collapse during the early life phase of a plasmonic vapor bubble have strong bearings on possible applications of such bubbles.

摘要

当被激光照射时,沉浸在水中的等离子体纳米粒子可以非常迅速和强烈地加热,导致所谓的等离子体蒸汽泡的成核。虽然这种气泡的长时间行为已经得到了很好的研究,但在这里,我们使用超高速成像技术揭示了这些气泡的成核和早期生命阶段。在照明开始后的一段时间延迟后,一个巨大的气泡爆炸式地生长,并在 200μs 内再次坍塌(气泡生命阶段 1)。最大气泡体积 [Formula: see text]随着激光功率的降低而显著增加,导致总释放能量 E 减少。这个释放能量与 [Formula: see text]表现出普遍的线性标度关系,与周围水的气体浓度无关。这一发现支持初始的巨大气泡是一个纯蒸汽泡。相比之下,延迟时间确实取决于水的气体浓度,因为水中的气体口袋有利于更早的蒸汽泡成核,从而导致更小的延迟时间和更低的气泡成核温度。在初始巨大气泡的坍塌之后,首先,由剩余气体核形成的更小的振荡气泡(气泡生命阶段 2)。随后,已知的由蒸发主导的生长阶段接管,气泡稳定(生命阶段 3)。在最终的生命阶段 4 中,由于周围的加热,气泡通过气体排出而缓慢生长。我们对等离子体蒸汽泡早期生命阶段的爆炸式生长和坍塌的发现,对这种气泡的可能应用有重要影响。

相似文献

1
Giant and explosive plasmonic bubbles by delayed nucleation.延迟成核引发的巨型和爆炸等离子体泡。
Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):7676-7681. doi: 10.1073/pnas.1805912115. Epub 2018 Jul 11.
2
Plasmonic Bubble Nucleation in Binary Liquids.二元液体中的等离子体气泡成核
J Phys Chem C Nanomater Interfaces. 2020 Jan 30;124(4):2591-2597. doi: 10.1021/acs.jpcc.9b10064. Epub 2019 Dec 31.
3
Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air.水中的等离子体气泡成核与生长:溶解空气的影响。
J Phys Chem C Nanomater Interfaces. 2019 Sep 26;123(38):23586-23593. doi: 10.1021/acs.jpcc.9b05374. Epub 2019 Aug 28.
6
Surface Bubble Growth in Plasmonic Nanoparticle Suspension.等离子体纳米颗粒悬浮液中的表面气泡生长
ACS Appl Mater Interfaces. 2020 Jun 10;12(23):26680-26687. doi: 10.1021/acsami.0c05448. Epub 2020 May 27.
9
Gas-vapor bubble nucleation--a unified approach.气体-蒸汽泡核化——一种统一方法。
J Colloid Interface Sci. 2004 Oct 15;278(2):436-46. doi: 10.1016/j.jcis.2004.06.020.

引用本文的文献

3
Photothermal Cavitation-Driven Micromotor to Penetrate Cell Membrane.光热空化驱动的微电机穿透细胞膜
J Am Chem Soc. 2025 Mar 12;147(10):8906-8916. doi: 10.1021/jacs.5c00482. Epub 2025 Feb 27.
5
Refractive Index of Single Surface Nanobubbles.单表面纳米气泡的折射率
Chem Biomed Imaging. 2023 May 22;1(4):387-394. doi: 10.1021/cbmi.3c00047. eCollection 2023 Jul 24.

本文引用的文献

3
Bubble-Pen Lithography.气泡笔光刻技术
Nano Lett. 2016 Jan 13;16(1):701-8. doi: 10.1021/acs.nanolett.5b04524. Epub 2015 Dec 22.
6
Kinetics of nanobubble generation around overheated nanoparticles.过热纳米颗粒周围纳米气泡的生成动力学
Phys Rev Lett. 2014 Mar 14;112(10):105701. doi: 10.1103/PhysRevLett.112.105701. Epub 2014 Mar 12.
8
Nanoplasmonics for chemistry.纳米等离子体化学
Chem Soc Rev. 2014 Jun 7;43(11):3898-907. doi: 10.1039/c3cs60364d. Epub 2014 Feb 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验