School of Computer Science, The University of Sydney, Darlington, NSW 2008, Australia.
School of Engineering and Technology, Central Queensland University, Sydney, 2000 NSW, Australia.
Sensors (Basel). 2021 Jan 14;21(2):552. doi: 10.3390/s21020552.
This paper proposes a novel identity management framework for Internet of Things (IoT) and cloud computing-based personalized healthcare systems. The proposed framework uses multimodal encrypted biometric traits to perform authentication. It employs a combination of centralized and federated identity access techniques along with biometric based continuous authentication. The framework uses a fusion of electrocardiogram (ECG) and photoplethysmogram (PPG) signals when performing authentication. In addition to relying on the unique identification characteristics of the users' biometric traits, the security of the framework is empowered by the use of Homomorphic Encryption (HE). The use of HE allows patients' data to stay encrypted when being processed or analyzed in the cloud. Thus, providing not only a fast and reliable authentication mechanism, but also closing the door to many traditional security attacks. The framework's performance was evaluated and validated using a machine learning (ML) model that tested the framework using a dataset of 25 users in seating positions. Compared to using just ECG or PPG signals, the results of using the proposed fused-based biometric framework showed that it was successful in identifying and authenticating all 25 users with 100% accuracy. Hence, offering some significant improvements to the overall security and privacy of personalized healthcare systems.
本文提出了一种新颖的物联网 (IoT) 和基于云计算的个性化医疗系统身份管理框架。该框架使用多模态加密生物特征进行认证。它采用集中式和联邦式身份访问技术以及基于生物特征的连续认证相结合的方式。该框架在进行认证时使用心电图 (ECG) 和光电容积脉搏波 (PPG) 信号的融合。除了依赖于用户生物特征的独特识别特征外,框架的安全性还得益于同态加密 (HE) 的使用。使用 HE 可以在云中处理或分析患者数据时保持加密,从而不仅提供了快速可靠的认证机制,而且还阻止了许多传统的安全攻击。该框架的性能使用机器学习 (ML) 模型进行评估和验证,该模型使用 25 名坐姿用户的数据集测试了框架。与仅使用 ECG 或 PPG 信号相比,使用所提出的基于融合的生物特征框架的结果表明,它能够成功识别和认证所有 25 名用户,准确率达到 100%。因此,为个性化医疗系统的整体安全性和隐私性提供了一些重大改进。