Montagnac Julie A, Davis Christopher R, Tanumihardjo Sherry A
Author Montagnac is with SupAgro Montpellier, Ecole Nationale Supérieure Agronomique of Montpellier, 02 Place Pierre Viala, 34060 Montpellier Cedex 1, France. Authors Davis and Tanumihardjo are with Univ. of Wisconsin-Madison, Dept. of Nutritional Sciences, 1415 Linden Drive, Madison, WI 53706, U.S.A. Direct inquiries to author Tanumihardjo (E-mail:
Compr Rev Food Sci Food Saf. 2009 Jul;8(3):181-194. doi: 10.1111/j.1541-4337.2009.00077.x.
Cassava is a drought-tolerant, staple food crop grown in tropical and subtropical areas where many people are afflicted with undernutrition, making it a potentially valuable food source for developing countries. Cassava roots are a good source of energy while the leaves provide protein, vitamins, and minerals. However, cassava roots and leaves are deficient in sulfur-containing amino acids (methionine and cysteine) and some nutrients are not optimally distributed within the plant. Cassava also contains antinutrients that can have either positive or adverse effects on health depending upon the amount ingested. Although some of these compounds act as antioxidants and anticarcinogens, they can interfere with nutrient absorption and utilization and may have toxic side effects. Efforts to add nutritional value to cassava (biofortification) by increasing the contents of protein, minerals, starch, and β-carotene are underway. The transfer of a 284 bp synthetic gene coding for a storage protein rich in essential amino acids and the crossbreeding of wild-type cassava varieties with Manihot dichotoma or Manihot oligantha have shown promising results regarding cassava protein content. Enhancing ADP glucose pyrophosphorylase activity in cassava roots or adding amylase to cassava gruels increases cassava energy density. Moreover, carotenoid-rich yellow and orange cassava may be a foodstuff for delivering provitamin A to vitamin A-depleted populations. Researchers are currently investigating the effects of cassava processing techniques on carotenoid stability and isomerization, as well as the vitamin A value of different varieties of cassava. Biofortified cassava could alleviate some aspects of food insecurity in developing countries if widely adopted.
木薯是一种耐旱的主食作物,生长在热带和亚热带地区,这些地区有许多人营养不良,这使得木薯成为发展中国家一种潜在的宝贵食物来源。木薯根是很好的能量来源,而叶子则提供蛋白质、维生素和矿物质。然而,木薯根和叶缺乏含硫氨基酸(蛋氨酸和半胱氨酸),并且一些营养物质在植物体内的分布并不理想。木薯还含有抗营养物质,根据摄入量的不同,这些物质可能对健康产生正面或负面影响。尽管其中一些化合物具有抗氧化和抗癌作用,但它们会干扰营养物质的吸收和利用,并且可能有有毒的副作用。目前正在努力通过增加蛋白质、矿物质、淀粉和β-胡萝卜素的含量来提高木薯的营养价值(生物强化)。转移一个编码富含必需氨基酸的贮藏蛋白的284 bp合成基因,以及将野生型木薯品种与二歧木薯或少花木薯杂交,在木薯蛋白质含量方面已显示出有希望的结果。提高木薯根中的ADP葡萄糖焦磷酸化酶活性或向木薯粥中添加淀粉酶可增加木薯的能量密度。此外,富含类胡萝卜素的黄色和橙色木薯可能是一种向维生素A缺乏人群提供维生素A原的食物。研究人员目前正在研究木薯加工技术对类胡萝卜素稳定性和异构化的影响,以及不同品种木薯的维生素A价值。如果广泛采用,生物强化木薯可以缓解发展中国家粮食不安全的一些问题。