Suppr超能文献

成对共识解码可提高神经网络碱基调用器对纳米孔测序的准确性。

Pair consensus decoding improves accuracy of neural network basecallers for nanopore sequencing.

机构信息

Department of Bioengineering, University of California, Berkeley, 94720, USA.

出版信息

Genome Biol. 2021 Jan 19;22(1):38. doi: 10.1186/s13059-020-02255-1.

Abstract

We develop a general computational approach for improving the accuracy of basecalling with Oxford Nanopore's 1D and related sequencing protocols. Our software PoreOver ( https://github.com/jordisr/poreover ) finds the consensus of two neural networks by aligning their probability profiles, and is compatible with multiple nanopore basecallers. When applied to the recently-released Bonito basecaller, our method reduces the median sequencing error by more than half.

摘要

我们开发了一种通用的计算方法,用于提高牛津纳米孔的 1D 和相关测序协议的碱基准确率。我们的软件 PoreOver(https://github.com/jordisr/poreover)通过对齐它们的概率分布来找到两个神经网络的共识,并与多个纳米孔碱基识别器兼容。当应用于最近发布的 Bonito 碱基识别器时,我们的方法将测序错误的中位数降低了一半以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fb7/7814537/1b681a0985b5/13059_2020_2255_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验