Suppr超能文献

评估迁移学习在用于心脏短轴切片分类的深度卷积神经网络模型中的应用。

Evaluation of transfer learning in deep convolutional neural network models for cardiac short axis slice classification.

机构信息

Department of Computer Science and Engineering, Sogang University, Seoul, Republic of Korea.

Clinical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.

出版信息

Sci Rep. 2021 Jan 19;11(1):1839. doi: 10.1038/s41598-021-81525-9.

Abstract

In computer-aided analysis of cardiac MRI data, segmentations of the left ventricle (LV) and myocardium are performed to quantify LV ejection fraction and LV mass, and they are performed after the identification of a short axis slice coverage, where automatic classification of the slice range of interest is preferable. Standard cardiac image post-processing guidelines indicate the importance of the correct identification of a short axis slice range for accurate quantification. We investigated the feasibility of applying transfer learning of deep convolutional neural networks (CNNs) as a means to automatically classify the short axis slice range, as transfer learning is well suited to medical image data where labeled data is scarce and expensive to obtain. The short axis slice images were classified into out-of-apical, apical-to-basal, and out-of-basal, on the basis of short axis slice location in the LV. We developed a custom user interface to conveniently label image slices into one of the three categories for the generation of training data and evaluated the performance of transfer learning in nine popular deep CNNs. Evaluation with unseen test data indicated that among the CNNs the fine-tuned VGG16 produced the highest values in all evaluation categories considered and appeared to be the most appropriate choice for the cardiac slice range classification.

摘要

在心脏 MRI 数据的计算机辅助分析中,需要对左心室 (LV) 和心肌进行分割,以量化 LV 射血分数和 LV 质量,并且在识别短轴切片覆盖范围后进行,其中自动分类感兴趣的切片范围是首选。标准的心脏图像后处理指南表明,正确识别短轴切片范围对于准确量化非常重要。我们研究了应用深度卷积神经网络 (CNN) 的迁移学习作为自动分类短轴切片范围的方法的可行性,因为迁移学习非常适合医学图像数据,这些数据的标签数据稀缺且获取成本高。根据 LV 中的短轴切片位置,将短轴切片图像分类为心尖外、心尖至基底和基底外。我们开发了一个自定义用户界面,方便地将图像切片标记为三个类别之一,以生成训练数据,并评估了九种流行的深度 CNN 中的迁移学习性能。使用看不见的测试数据进行评估表明,在考虑的所有评估类别中,经过微调的 VGG16 在所有 CNN 中产生的数值最高,似乎是心脏切片范围分类的最合适选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a05/7815707/eef4cae35ddc/41598_2021_81525_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验