Suppr超能文献

使用机器学习从心血管磁共振图像中检测左心发育不全综合征解剖结构。

Detection of hypoplastic left heart syndrome anatomy from cardiovascular magnetic resonance images using machine learning.

作者信息

Gabbert Dominik Daniel, Petersen Lennart, Burleigh Abigail, Grazioli Simona Boroni, Krupickova Sylvia, Koch Reinhard, Uebing Anselm Sebastian, Santarossa Monty, Voges Inga

机构信息

Department of Congenital Heart Disease and Pediatric Cardiology, DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Hospital Schleswig-Holstein, Kiel, Germany.

Department of Computer Science, Kiel University, Kiel, Germany.

出版信息

MAGMA. 2024 Feb;37(1):115-125. doi: 10.1007/s10334-023-01124-9. Epub 2024 Jan 12.

Abstract

OBJECTIVE

The prospect of being able to gain relevant information from cardiovascular magnetic resonance (CMR) image analysis automatically opens up new potential to assist the evaluating physician. For machine-learning-based classification of complex congenital heart disease, only few studies have used CMR.

MATERIALS AND METHODS

This study presents a tailor-made neural network architecture for detection of 7 distinctive anatomic landmarks in CMR images of patients with hypoplastic left heart syndrome (HLHS) in Fontan circulation or healthy controls and demonstrates the potential of the spatial arrangement of the landmarks to identify HLHS. The method was applied to the axial SSFP CMR scans of 46 patients with HLHS and 33 healthy controls.

RESULTS

The displacement between predicted and annotated landmark had a standard deviation of 8-17 mm and was larger than the interobserver variability by a factor of 1.1-2.0. A high overall classification accuracy of 98.7% was achieved.

DISCUSSION

Decoupling the identification of clinically meaningful anatomic landmarks from the actual classification improved transparency of classification results. Information from such automated analysis could be used to quickly jump to anatomic positions and guide the physician more efficiently through the analysis depending on the detected condition, which may ultimately improve work flow and save analysis time.

摘要

目的

能够从心血管磁共振(CMR)图像分析中自动获取相关信息的前景为辅助评估医生开辟了新的潜力。对于基于机器学习的复杂先天性心脏病分类,仅有少数研究使用了CMR。

材料与方法

本研究提出了一种定制的神经网络架构,用于在处于Fontan循环的左心发育不全综合征(HLHS)患者或健康对照者的CMR图像中检测7个独特的解剖标志,并展示了这些标志的空间排列在识别HLHS方面的潜力。该方法应用于46例HLHS患者和33例健康对照者的轴向稳态自由进动(SSFP)CMR扫描。

结果

预测标志与标注标志之间的位移标准差为8 - 17毫米,比观察者间变异性大1.1 - 2.0倍。实现了98.7%的高总体分类准确率。

讨论

将具有临床意义的解剖标志的识别与实际分类解耦提高了分类结果的透明度。来自这种自动分析的信息可用于快速定位解剖位置,并根据检测到的情况更有效地指导医生进行分析,这最终可能改善工作流程并节省分析时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d70/10876735/948ba415d2c1/10334_2023_1124_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验