Suppr超能文献

用吡啶-2,6-二甲酸交联壳聚糖作为一种绿色生物聚合物吸附剂从水溶液中吸附 Cu(II)离子。

Adsorption of Cu(II) ions from aqueous solution using pyridine-2,6-dicarboxylic acid crosslinked chitosan as a green biopolymer adsorbent.

机构信息

Department of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa.

Department of Chemical Sciences, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa.

出版信息

Int J Biol Macromol. 2020 Dec 15;165(Pt B):2484-2493. doi: 10.1016/j.ijbiomac.2020.10.150. Epub 2020 Oct 24.

Abstract

In this study, crosslinked chitosan (CCS) has been synthesized by anchoring a bifunctional ligand, namely pyridine-2,6-dicarboxylic acid (PDC) with chitosan through ion exchange. The functionalized biopolymer has been characterized using different instrumental analyses including elemental (CHN), spectroscopic (UV-visible, NMR, powder XRD, and FTIR), thermal analyses (TGA and DSC), surface and morphological (BET and SEM) analyses. The PDC-CCS was utilized for the recovery of Cu(II) from water contaminated with Cu. The adsorption limit/capacity of PDC-CCS has been examined for solution pH, temperature, Cu(II) ion concentration, and the contact time of the adsorbent. An extreme adsorption limit of 2186 mmol·g has been found for the PDC-CCS. Equilibrium was quickly attained within 60 min from the start of adsorption. Also, it was discovered that the adsorption limit/capacity exceedingly relies upon temperature and pH. On testing the experimental data with the two most popular adsorption models (fundamentally, Freundlich and Langmuir), we found that Cu(II) ion adsorption suit both models. Similarly, the experimental adsorption kinetics is in reality, second-order. Thermodynamic studies also revealed that the adsorption process was spontaneous and enthalpy driven. DFT calculations suggest that the main adsorption mechanism is by chelation through charge transfer from the adsorbent to the Cu(II) ions in solution.

摘要

在这项研究中,通过离子交换将双功能配体,即吡啶-2,6-二羧酸(PDC)与壳聚糖锚定,合成了交联壳聚糖(CCS)。使用不同的仪器分析(包括元素(CHN)、光谱(UV-可见、NMR、粉末 XRD 和 FTIR)、热分析(TGA 和 DSC)、表面和形态(BET 和 SEM)分析)对功能化生物聚合物进行了表征。PDC-CCS 已用于从受 Cu 污染的水中回收 Cu(II)。考察了 PDC-CCS 的吸附极限/容量对溶液 pH 值、温度、Cu(II)离子浓度和吸附剂接触时间的影响。发现 PDC-CCS 的吸附极限为 2186 mmol·g。吸附开始后 60 分钟内即可迅速达到平衡。此外,还发现吸附极限/容量非常依赖于温度和 pH 值。在用两种最流行的吸附模型(基本上是 Freundlich 和 Langmuir)对实验数据进行测试后,我们发现 Cu(II)离子吸附适合这两种模型。同样,实验吸附动力学实际上是二级的。热力学研究还表明,吸附过程是自发的,由焓驱动。DFT 计算表明,吸附的主要机制是通过配体从吸附剂向溶液中的 Cu(II)离子发生电荷转移而发生螯合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验