Escobar Luis, Ballester Pablo
Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain.
Departament de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain.
Chem Rev. 2021 Feb 24;121(4):2445-2514. doi: 10.1021/acs.chemrev.0c00522. Epub 2021 Jan 20.
Molecular recognition in water using macrocyclic synthetic receptors constitutes a vibrant and timely research area of supramolecular chemistry. Pioneering examples on the topic date back to the 1980s. The investigated model systems and the results derived from them are key for furthering our understanding of the remarkable properties exhibited by proteins: high binding affinity, superior binding selectivity, and extreme catalytic performance. Dissecting the different effects contributing to the proteins' properties is severely limited owing to its complex nature. Molecular recognition in water is also involved in other appreciated areas such as self-assembly, drug discovery, and supramolecular catalysis. The development of all these research areas entails a deep understanding of the molecular recognition events occurring in aqueous media. In this review, we cover the past three decades of molecular recognition studies of neutral and charged, polar and nonpolar organic substrates and ions using selected artificial receptors soluble in water. We briefly discuss the intermolecular forces involved in the reversible binding of the substrates, as well as the hydrophobic and Hofmeister effects operating in aqueous solution. We examine, from an interdisciplinary perspective, the design and development of effective water-soluble synthetic receptors based on cyclic, oligo-cyclic, and concave-shaped architectures. We also include selected examples of self-assembled water-soluble synthetic receptors. The catalytic performance of some of the presented receptors is also described. The latter process also deals with molecular recognition and energetic stabilization, but instead of binding ground-state species, the targets become elusive counterparts: transition states and other high-energy intermediates.
使用大环合成受体在水中进行分子识别是超分子化学中一个活跃且适时的研究领域。关于该主题的开创性实例可追溯到20世纪80年代。所研究的模型系统以及从中得出的结果对于深化我们对蛋白质所展现出的卓越性质的理解至关重要:高结合亲和力、卓越的结合选择性以及极端的催化性能。由于蛋白质性质的复杂性,剖析导致其性质的不同影响受到严重限制。在水中的分子识别还涉及其他受关注的领域,如自组装、药物发现和超分子催化。所有这些研究领域的发展都需要深入理解在水性介质中发生的分子识别事件。在本综述中,我们涵盖了过去三十年使用选定的可溶于水的人工受体对中性和带电、极性和非极性有机底物及离子进行分子识别的研究。我们简要讨论了底物可逆结合中涉及的分子间力,以及在水溶液中起作用的疏水效应和霍夫迈斯特效应。我们从跨学科的角度研究基于环状、寡环和凹形结构的有效水溶性合成受体的设计与开发。我们还列举了一些自组装水溶性合成受体的实例。文中还描述了一些所展示受体的催化性能。后一过程也涉及分子识别和能量稳定化,但目标不是结合基态物种,而是难以捉摸的对应物:过渡态和其他高能中间体。