Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France; Centre de Recherche Paul Pascal, UMR 5031, Université de Bordeaux, CNRS, 115 Avenue du Dr A. Schweitzer, 33600 Pessac, France.
Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France.
J Colloid Interface Sci. 2021 May;589:96-109. doi: 10.1016/j.jcis.2020.12.082. Epub 2020 Dec 29.
The stability of emulsions stabilized by soft and responsive microgels and their macroscopic properties are governed by the microstructure of microgels, in particular their deformability. However, little is known about the role of the microgel chemistry, though it is expected that polymeric backbone with an amphiphilic structure is a requirement for their adsorption at the oil-water interface.
A series of biocompatible, thermoresponsive and amphiphilic poly(oligoethylene glycol)methacrylate (pOEMA) microgels is synthesized, with varying hydrophobic-hydrophilic balance, or equivalent varying volume phase transition temperature (VPTT). Their behavior in the bulk phase and at solid interfaces is compared to their behavior at liquid interfaces, studied on flat and model interfaces by the pendant drop method, and on drops, in microgel-stabilized emulsions.
Controlling the composition of microgels by simply changing the number of ethylene oxide groups in the hydrophilic side chain allows a precise tuning of their VPTT in the range of 20-60 °C. Simultaneously, the swelling ratio and the deformability of the microgels increase by increasing the hydrophilicity, as a result of the polymerization process. Regardless of their hydrophilicity, all the swollen pOEMA microgels adsorb at the liquid interface and stabilize emulsions, whose flocculation state and mechanical stability depends on the microgel deformability. Unexpectedly, most emulsions remain stable upon heating above the VPTT of the microgels. Such feature highlights their extreme robustness, whose origin is discussed. This study opens new opportunities for the use of biocompatible Pickering emulsifiers.
由柔软且响应灵敏的微凝胶稳定的乳液的稳定性及其宏观性质受微凝胶的微观结构控制,尤其是其变形性。然而,尽管人们期望具有两亲性结构的聚合物主链是其在油水界面吸附的要求,但对于微凝胶化学的作用却知之甚少。
合成了一系列具有生物相容性、温度响应性和两亲性的聚(聚乙二醇甲基丙烯酸酯)(pOEMA)微凝胶,其疏水-亲水平衡或等效的体积相转变温度(VPTT)不同。通过悬滴法在平板和模型界面上以及在微凝胶稳定的乳液中的液滴上研究了它们在本体相和固-液界面上的行为,以比较它们在液-液界面上的行为。
通过简单地改变亲水性侧链中的环氧乙烷基团的数量来控制微凝胶的组成,可以将其 VPTT 精确地调节在 20-60°C 的范围内。同时,随着亲水性的增加,微凝胶的溶胀比和变形性也增加,这是聚合过程的结果。无论其亲水性如何,所有溶胀的 pOEMA 微凝胶都会吸附在液-液界面上并稳定乳液,其絮聚状态和机械稳定性取决于微凝胶的变形性。出乎意料的是,大多数乳液在加热到高于微凝胶 VPTT 以上时仍保持稳定。这种特性突出了其极高的稳定性,其起源将在讨论中进行探讨。这项研究为使用生物相容性的 Pickering 乳化剂开辟了新的机会。