Suppr超能文献

ATP-γ-S对鱿鱼轴突细胞内pH调节系统的pH敏感性激活。

pH-sensitive activation of the intracellular-pH regulation system in squid axons by ATP-gamma-S.

作者信息

Boron W F, Hogan E, Russell J M

机构信息

Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06510.

出版信息

Nature. 1988 Mar 17;332(6161):262-5. doi: 10.1038/332262a0.

Abstract

The regulation of intracellular pH (pHi) is essential for normal cell function, and controlled changes in pHi may play a central role in cell activation. Sodium-dependent Cl-HCO3 exchange is the dominant mechanism of pHi regulation in the invertebrate cells examined, and also occurs in mammalian cells. The transporter extrudes acid from the cell by exchanging extracellular Na+ and HCO3- (ref. 9) (or a related species) for intracellular Cl- (refs 3, 4). It is blocked by the stilbene derivatives DIDS (4,4'-diisothiocyano-stilbene-2,2'-disulphonate, ref. 10) and SITS (4-acetamido-4'-isothiocyano-stilbene-2,2'-disulphonate, ref. 3), and has a stoichiometry of two intracellular H+ neutralized for each Na+ taken up and each Cl- extruded by the axon. Because the inwardly-directed Na+ concentration gradient is sufficiently large to energize both the HCO3- influx and Cl- efflux, this electroneutral exchanger could be a classic secondary active transporter, thermodynamically independent of ATP hydrolysis. However, at least in the squid axon, the exchanger has an absolute requirement for ATP (ref. 3). Thus, a major unresolved issue is whether this Na-dependent Cl-HCO3 exchanger stoichiometrically hydrolyses ATP (the pump hypothesis), or whether ATP activates the transporter by a mechanism such as phosphorylation or simple binding (the activation hypothesis). We have now explored the role of ATP in pHi regulation by dialysing axons with the ATP analogue ATP-gamma-S. In many systems, ATP-gamma-S is an acceptable substrate for protein kinases, whereas the resulting thiophosphorylated proteins are not as readily hydrolysed by phosphatases as are phosphorylated proteins. Our results rule out the pump hypothesis, and show that the basis of the axon's ATP requirement is the pH-dependent activation (by, for instance, phosphorylation or ATP binding) of the exchanger itself, or of an essential activator.

摘要

细胞内pH值(pHi)的调节对于正常细胞功能至关重要,而pHi的可控变化可能在细胞激活中起核心作用。钠依赖性Cl-HCO3交换是所研究的无脊椎动物细胞中pHi调节的主要机制,在哺乳动物细胞中也存在。该转运体通过将细胞外的Na+和HCO3-(参考文献9)(或相关物质)与细胞内的Cl-进行交换,从而将酸排出细胞外(参考文献3、4)。它被芪衍生物DIDS(4,4'-二异硫氰酸芪-2,2'-二磺酸盐,参考文献10)和SITS(4-乙酰氨基-4'-异硫氰酸芪-2,2'-二磺酸盐,参考文献3)所阻断,并且轴突每摄取一个Na+和排出一个Cl-,就有两个细胞内H+被中和,其化学计量比为1:1:2。由于向内的Na+浓度梯度足够大,足以驱动HCO3-内流和Cl-外流,这种电中性交换体可能是一种典型的继发性主动转运体,在热力学上独立于ATP水解。然而,至少在鱿鱼轴突中,该交换体对ATP有绝对需求(参考文献3)。因此,一个主要的未解决问题是,这种钠依赖性Cl-HCO3交换体是按化学计量比水解ATP(泵假说),还是ATP通过磷酸化或简单结合等机制激活转运体(激活假说)。我们现在通过用ATP类似物ATP-γ-S透析轴突,探讨了ATP在pHi调节中的作用。在许多系统中,ATP-γ-S是蛋白激酶可接受的底物,而由此产生的硫代磷酸化蛋白不像磷酸化蛋白那样容易被磷酸酶水解。我们的结果排除了泵假说,并表明轴突对ATP需求的基础是交换体本身或必需激活剂的pH依赖性激活(例如通过磷酸化或ATP结合)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验