Suppr超能文献

使用电镀锌直接生长硅、锗和硅锗异质结构纳米线:一种用于锂离子合金化阳极的廉价种子技术。

Direct Growth of Si, Ge, and Si-Ge Heterostructure Nanowires Using Electroplated Zn: An Inexpensive Seeding Technique for Li-Ion Alloying Anodes.

作者信息

Kilian Seamus, McCarthy Kieran, Stokes Killian, Adegoke Temilade Esther, Conroy Michele, Amiinu Ibrahim Saana, Geaney Hugh, Kennedy Tadhg, Ryan Kevin M

机构信息

Bernal Institute and Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.

Bernal Institute and Department of Physics, University of Limerick, Limerick, V94 T9PX, Ireland.

出版信息

Small. 2021 Mar;17(10):e2005443. doi: 10.1002/smll.202005443. Epub 2021 Jan 21.

Abstract

A scalable and cost-effective process is used to electroplate metallic Zn seeds on stainless steel substrates. Si and Ge nanowires (NWs) are subsequently grown by placing the electroplated substrates in the solution phase of a refluxing organic solvent at temperatures >430 °C and injecting the respective liquid precursors. The native oxide layer formed on reactive metals such as Zn can obstruct NW growth and is removed in situ by injecting the reducing agent LiBH . The findings show that the use of Zn as a catalyst produces defect-rich Si NWs that can be extended to the synthesis of Si-Ge axial heterostructure NWs with an atomically abrupt Si-Ge interface. As an anode material, the as grown Zn seeded Si NWs yield an initial discharge capacity of 1772 mAh g and a high capacity retention of 85% after 100 cycles with the active participation of both Si and Zn during cycling. Notably, the Zn seeds actively participate in the Li-cycling activities by incorporating into the Si NWs body via a Li-assisted welding process, resulting in restructuring the NWs into a highly porous network structure that maintains a stable cycling performance.

摘要

采用一种可扩展且具有成本效益的工艺在不锈钢基板上电镀金属锌籽晶。随后,通过将电镀后的基板置于温度高于430°C的回流有机溶剂溶液相中并注入相应的液体前驱体,生长硅和锗纳米线(NWs)。在诸如锌等活性金属上形成的原生氧化层会阻碍纳米线的生长,通过注入还原剂LiBH4将其原位去除。研究结果表明,使用锌作为催化剂可产生富含缺陷的硅纳米线,这可扩展至具有原子级陡峭硅 - 锗界面的硅 - 锗轴向异质结构纳米线的合成。作为阳极材料,所生长的锌籽晶硅纳米线在循环过程中硅和锌均积极参与,初始放电容量为1772 mAh g,100次循环后容量保持率高达85%。值得注意的是,锌籽晶通过锂辅助焊接过程融入硅纳米线主体,积极参与锂循环活动,导致纳米线重构为高度多孔的网络结构,从而保持稳定的循环性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验