Suppr超能文献

通过亚纳秒光子检测实现纳米颗粒荧光的量子方法。

Quantum approach for nanoparticle fluorescence by sub-ns photon detection.

作者信息

Yamamoto Masanobu, Robinson J Paul

机构信息

Miftek Corporation, West Lafayette, Indiana, USA.

Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA.

出版信息

Cytometry A. 2021 Feb;99(2):145-151. doi: 10.1002/cyto.a.24310. Epub 2021 Feb 15.

Abstract

Well defined detection and analysis of nanoparticle-sized samples such as extracellular vesicles or viruses may be important for potential disease diagnostics. However, using conventional flow-cytometry optical methods to evaluate such small particles is quite challenging. The reason is that the particle is smaller than the diffraction limit, making detection difficult. An alternative approach is fluorescence detection via conjugated fluorochromes attached to the nanoparticles; the challenge in this case is the limitation imposed upon detection of a very small number of emitted photons buried in high background photon counts. Emitted fluorescence is described by the well-known equation kf = σa I Q, which describes the emitted fluorescence rate (kf) (photons/s) as the multiplication of molecular absorption cross section(σa), excitation intensity (I), and quantum yield (Q). In addition, the excitation rate is equal to 1/t, which is the inverse of the lifetime of several ns representing the most typical conjugated fluorescent molecules used in flow cytometry. We recently developed a sub-ns photon sensor that is faster than most fluorescence lifetimes, since sub-ns speed is a critically important parameter for the separation of individual emitted photons. Based on our observation of fluorescence and background levels on typical commercial flow cytometers it is evident that a significant component of the background is induced by water-molecular vibrations. Therefore, understanding what constitutes all the components that contribute to the signals we measure in flow cytometry would help in defining what we currently call "background signals." We attempted to define a theoretical model to try to unravel these issues. This model was based on use of a reflective dry surface in the absence of water molecules. Our objective was to determine if it is possible to minimize background and enhance signal, and to provide valuable information on the contributing components of the signals collected. In order to test this model, we tested a single dried particle 50 nm in diameter on a reflective surface with minimum background. While this is clearly not a standard biological system, our results suggest that this quantum approach closely follows established photon base theory. Our goal was to define the parameters for practical nanoparticle-fluorescence analysis while enhancing our knowledge of the contribution of background properties.

摘要

对细胞外囊泡或病毒等纳米颗粒大小的样本进行明确的检测和分析,对于潜在的疾病诊断可能很重要。然而,使用传统的流式细胞术光学方法来评估此类小颗粒颇具挑战性。原因在于颗粒小于衍射极限,使得检测困难。一种替代方法是通过附着在纳米颗粒上的共轭荧光染料进行荧光检测;在这种情况下的挑战是,在高背景光子计数中检测极少量发射光子时存在局限性。发射荧光由著名的方程(kf = σa I Q)描述,该方程将发射荧光速率((kf))(光子/秒)描述为分子吸收截面((σa))、激发强度((I))和量子产率((Q))的乘积。此外,激发速率等于(1/t),(t)是代表流式细胞术中使用的最典型共轭荧光分子的几纳秒寿命的倒数。我们最近开发了一种亚纳秒光子传感器,其速度比大多数荧光寿命都快,因为亚纳秒速度是分离单个发射光子的关键重要参数。基于我们对典型商用流式细胞仪上荧光和背景水平的观察,很明显背景的一个重要组成部分是由水分子振动引起的。因此,了解构成我们在流式细胞术中测量的信号的所有成分,将有助于定义我们目前所称的“背景信号”。我们试图定义一个理论模型来试图解开这些问题。该模型基于在没有水分子的情况下使用反射性干燥表面。我们的目标是确定是否有可能最小化背景并增强信号,并提供有关所收集信号的贡献成分的有价值信息。为了测试这个模型,我们在具有最小背景的反射表面上测试了一个直径为(50)纳米的单个干燥颗粒。虽然这显然不是一个标准的生物系统,但我们的结果表明这种量子方法紧密遵循既定的光子基础理论。我们的目标是定义实际纳米颗粒荧光分析的参数,同时增进我们对背景特性贡献的了解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验