Université Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France.
Université Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, 44000 Nantes, France.
Environ Sci Technol. 2021 Feb 2;55(3):1515-1526. doi: 10.1021/acs.est.0c06269. Epub 2021 Jan 21.
In vivo and in vitro evidence for detoxification of methylmercury (MeHg) as insoluble mercury selenide (HgSe) underlies the central paradigm that mercury exposure is not or little hazardous when tissue Se is in molar excess (Se:Hg > 1). However, this hypothesis overlooks the binding of Hg to selenoproteins, which lowers the amount of bioavailable Se that acts as a detoxification reservoir for MeHg, thereby underestimating the toxicity of mercury. This question was addressed by determining the chemical forms of Hg in various tissues of giant petrels spp. using a combination of high energy-resolution X-ray absorption near edge structure and extended X-ray absorption fine structure spectroscopy, and transmission electron microscopy coupled to elemental mapping. Three main Hg species were identified, a MeHg-cysteinate complex, a four-coordinate selenocysteinate complex (Hg(Sec)), and a HgSe precipitate, together with a minor dicysteinate complex Hg(Cys). The amount of HgSe decreases in the order liver > kidneys > brain = muscle, and the amount of Hg(Sec) in the order muscle > kidneys > brain > liver. On the basis of biochemical considerations and structural modeling, we hypothesize that Hg(Sec) is bound to the carboxy-terminus domain of selenoprotein P (SelP) which contains 12 Sec residues. Structural flexibility allows SelP to form multinuclear Hg(Se,Sec) complexes, which can be biomineralized to HgSe by protein self-assembly. Because Hg(Sec) has a Se:Hg molar ratio of 4:1, this species severely depletes the stock of bioavailable Se for selenoprotein synthesis and activity to one μg Se/g dry wet in the muscle of several birds. This concentration is still relatively high because selenium is naturally abundant in seawater, therefore it probably does not fall below the metabolic need for essential selenium. However, this study shows that this may not be the case for terrestrial animals, and that muscle may be the first tissue potentially injured by Hg toxicity.
体内和体外证据表明,当组织硒的摩尔过量(Se:Hg > 1)时,甲基汞(MeHg)会被解毒为不溶性汞硒化物(HgSe),这是汞暴露无害或危害较小的核心范式。然而,这种假设忽略了汞与硒蛋白的结合,这降低了作为 MeHg 解毒库的生物可利用硒的量,从而低估了汞的毒性。为了解决这个问题,我们使用高能量分辨率 X 射线吸收近边结构和扩展 X 射线吸收精细结构光谱学以及与元素映射相结合的透射电子显微镜,确定了巨海燕属各种组织中 Hg 的化学形式。鉴定出三种主要的 Hg 物种,即 MeHg-半胱氨酸复合物、四配位硒代半胱氨酸复合物(Hg(Sec))和 HgSe 沉淀物,以及少量的二半胱氨酸复合物 Hg(Cys)。HgSe 的量按肝脏>肾脏>大脑=肌肉的顺序减少,Hg(Sec)的量按肌肉>肾脏>大脑>肝脏的顺序减少。基于生化考虑和结构建模,我们假设 Hg(Sec)与包含 12 个 Sec 残基的硒蛋白 P(SelP)的羧基末端结构域结合。结构的灵活性允许 SelP 形成多核 Hg(Se,Sec)复合物,这些复合物可以通过蛋白质自组装生物矿化为 HgSe。由于 Hg(Sec)的 Se:Hg 摩尔比为 4:1,因此这种物质严重耗尽了生物可利用硒用于合成和活性硒蛋白的储量,使肌肉中每克干湿组织中的硒含量降至 1μg。由于硒在海水中天然丰富,因此这个浓度仍然相对较高,因此它可能不会低于对必需硒的代谢需求。然而,这项研究表明,这在陆生动物中可能并非如此,肌肉可能是第一个受到汞毒性潜在伤害的组织。