He Xing, Yang Ding-Shyue
Department of Chemistry, University of Houston, Houston, Texas 77204, United States.
Nano Lett. 2021 Feb 10;21(3):1440-1445. doi: 10.1021/acs.nanolett.0c04382. Epub 2021 Jan 21.
Energy transport dynamics in different nanostructures are crucial to both a fundamental understanding of and practical applications for heat management at the nanoscale. It has been reported that thermal conductivity may be severely impacted by stacking disorder in layered materials. Here, using ultrafast electron diffraction in the reflection geometry for direct probing of structural dynamics, we report a fundamental behavioral difference due to stacking order in an entirely different system-solid-supported methanol assemblies whose layered structures may resemble those of two-dimensional (2D) and van der Waals (vdW) solids but with much weaker in-plane hydrogen bonds. Thermal diffusion is found to be the transport mechanism across 2D-layered films without a cross-plane stacking order. In stark contrast, much faster ballistic energy transport is observed in 3D-ordered crystalline solids. The major change in such dynamical behavior may be associated with the efficiency of vibrational coupling between vdW-interacted methanol layers, which demonstrates a strong structure-property relation.
不同纳米结构中的能量传输动力学对于深入理解纳米尺度的热管理以及其实际应用都至关重要。据报道,层状材料中的堆积无序可能会严重影响热导率。在此,我们利用反射几何中的超快电子衍射直接探测结构动力学,报告了在一个完全不同的系统——固体支撑的甲醇组装体中,由于堆积顺序而产生的基本行为差异。该组装体的层状结构可能类似于二维(2D)和范德华(vdW)固体,但面内氢键要弱得多。我们发现,在没有跨平面堆积顺序的二维层状薄膜中,热扩散是能量传输机制。与之形成鲜明对比的是,在三维有序晶体固体中观察到了快得多的弹道能量传输。这种动力学行为的主要变化可能与范德华相互作用的甲醇层之间的振动耦合效率有关,这表明了很强的结构-性质关系。