Suppr超能文献

假尿嘧啶核苷的异源表达及相应最小生物合成基因簇的描述。

Heterologous Expression of Pseudouridimycin and Description of the Corresponding Minimal Biosynthetic Gene Cluster.

机构信息

Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany.

German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany.

出版信息

Molecules. 2021 Jan 19;26(2):510. doi: 10.3390/molecules26020510.

Abstract

Pseudouridimycin (PUM) was recently discovered from sp. DSM26212 as a novel bacterial nucleoside analog that competes with UTP for access to the RNA polymerase (RNAP) active site, thereby inhibiting bacterial RNAP by blocking transcription. This represents a novel antibacterial mode of action and it is known that PUM inhibits bacterial RNAP in vitro, inhibits bacterial growth in vitro, and was active in vivo in a mouse infection model of peritonitis. The biosynthetic gene cluster (BGC) was previously identified and characterized by knockout experiments. However, the minimal set of genes necessary for PUM production was not proposed. To identify the minimal BGC and to create a plug-and-play production platform for PUM and its biosynthetic precursors, several versions of a redesigned PUM BGC were generated and expressed in the heterologous host M1146 under control of strong promotors. Heterologous expression allowed identification of the putative serine/threonine kinase PumF as an enzyme essential for heterologous PUM production and thus corroboration of the PUM minimal BGC.

摘要

假尿苷霉素(PUM)最近从 sp. DSM26212 中被发现,是一种新型的细菌核苷类似物,它与 UTP 竞争进入 RNA 聚合酶(RNAP)活性位点,从而通过阻断转录来抑制细菌 RNAP。这代表了一种新的抗菌作用模式,已知 PUM 在体外抑制细菌 RNAP,在体外抑制细菌生长,并在腹膜炎的小鼠感染模型中具有活性。该生物合成基因簇(BGC)之前已通过敲除实验进行了鉴定和表征。然而,对于 PUM 产生所必需的最小基因集尚未提出。为了鉴定最小 BGC 并为 PUM 及其生物合成前体创建一个即插即用的生产平台,我们生成了几个经过重新设计的 PUM BGC 版本,并在异源宿主 M1146 中在强启动子的控制下进行表达。异源表达允许鉴定出假定的丝氨酸/苏氨酸激酶 PumF 作为异源 PUM 产生所必需的酶,从而证实了 PUM 最小 BGC 的存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2949/7835738/954958134fe1/molecules-26-00510-g001.jpg

相似文献

2
Analysis of the Pseudouridimycin Biosynthetic Pathway Provides Insights into the Formation of C-nucleoside Antibiotics.
Cell Chem Biol. 2018 May 17;25(5):540-549.e4. doi: 10.1016/j.chembiol.2018.02.008. Epub 2018 Mar 15.
3
Antibacterial Nucleoside-Analog Inhibitor of Bacterial RNA Polymerase.
Cell. 2017 Jun 15;169(7):1240-1248.e23. doi: 10.1016/j.cell.2017.05.042.
4
Discovery, properties, and biosynthesis of pseudouridimycin, an antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase.
J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):335-343. doi: 10.1007/s10295-018-2109-2. Epub 2018 Nov 21.
7
Heterologous expression of galbonolide biosynthetic genes in Streptomyces coelicolor.
Antonie Van Leeuwenhoek. 2015 May;107(5):1359-66. doi: 10.1007/s10482-015-0415-5. Epub 2015 Mar 4.
8
Identification and Heterologous Expression of the Chaxamycin Biosynthesis Gene Cluster from Streptomyces leeuwenhoekii.
Appl Environ Microbiol. 2015 Sep 1;81(17):5820-31. doi: 10.1128/AEM.01039-15. Epub 2015 Jun 19.
10
Sequence analysis and heterologous expression of the lincomycin biosynthetic cluster of the type strain Streptomyces lincolnensis ATCC 25466.
Folia Microbiol (Praha). 2008;53(5):395-401. doi: 10.1007/s12223-008-0060-8. Epub 2008 Dec 16.

引用本文的文献

1
Pleomorphic effects of three small-molecule inhibitors on transcription elongation by RNA polymerase.
bioRxiv. 2025 Feb 7:2025.02.07.637008. doi: 10.1101/2025.02.07.637008.
2
Pseudouridine-Modifying Enzymes SapB and SapH Control Entry into the Pseudouridimycin Biosynthetic Pathway.
ACS Chem Biol. 2023 Apr 21;18(4):794-802. doi: 10.1021/acschembio.2c00826. Epub 2023 Apr 2.
3
Experimental and computational snapshots of C-C bond formation in a C-nucleoside synthase.
Open Biol. 2023 Jan;13(1):220287. doi: 10.1098/rsob.220287. Epub 2023 Jan 11.
4
Development and Research Progress of Anti-Drug Resistant Bacteria Drugs.
Infect Drug Resist. 2021 Dec 21;14:5575-5593. doi: 10.2147/IDR.S338987. eCollection 2021.
5
Biosynthesis of C-nucleoside antibiotics in actinobacteria: recent advances and future developments.
Microb Cell Fact. 2022 Jan 4;21(1):2. doi: 10.1186/s12934-021-01722-z.

本文引用的文献

1
Cryptic phosphorylation in nucleoside natural product biosynthesis.
Nat Chem Biol. 2021 Feb;17(2):213-221. doi: 10.1038/s41589-020-00656-8. Epub 2020 Nov 30.
2
Solubility and Stability Enhanced Oral Formulations for the Anti-Infective Corallopyronin A.
Pharmaceutics. 2020 Nov 18;12(11):1105. doi: 10.3390/pharmaceutics12111105.
4
Analysis of the Pseudouridimycin Biosynthetic Pathway Provides Insights into the Formation of C-nucleoside Antibiotics.
Cell Chem Biol. 2018 May 17;25(5):540-549.e4. doi: 10.1016/j.chembiol.2018.02.008. Epub 2018 Mar 15.
5
Antibacterial Nucleoside-Analog Inhibitor of Bacterial RNA Polymerase.
Cell. 2017 Jun 15;169(7):1240-1248.e23. doi: 10.1016/j.cell.2017.05.042.
6
Insights into Structure-Activity Relationships of Bacterial RNA Polymerase Inhibiting Corallopyronin Derivatives.
J Nat Prod. 2015 Oct 23;78(10):2505-9. doi: 10.1021/acs.jnatprod.5b00175. Epub 2015 Oct 2.
7
Corallopyronin A - a promising antibiotic for treatment of filariasis.
Int J Med Microbiol. 2014 Jan;304(1):72-8. doi: 10.1016/j.ijmm.2013.08.010. Epub 2013 Sep 4.
8
Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes.
Metab Eng. 2013 Sep;19:98-106. doi: 10.1016/j.ymben.2013.07.006. Epub 2013 Jul 20.
9
Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation.
FEMS Microbiol Lett. 2013 Sep;346(1):11-9. doi: 10.1111/1574-6968.12189. Epub 2013 Jun 19.
10
New target for inhibition of bacterial RNA polymerase: 'switch region'.
Curr Opin Microbiol. 2011 Oct;14(5):532-43. doi: 10.1016/j.mib.2011.07.030. Epub 2011 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验