Suppr超能文献

增强型扩展显微镜测量单细胞中的纳米级结构和生化重塑。

Enhanced expansion microscopy to measure nanoscale structural and biochemical remodeling in single cells.

机构信息

Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom.

Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom; Department of Molecular Biology & Biotechnology, Faculty of Science, The University of Sheffield, Sheffield, United Kingdom.

出版信息

Methods Cell Biol. 2021;161:147-180. doi: 10.1016/bs.mcb.2020.04.019. Epub 2020 Jun 10.

Abstract

Resolution is a key feature in microscopy which allows the visualization of the fine structure of cells. Much of the life processes within these cells depend on the three-dimensional (3D) complexity of these structures. Optical super-resolution microscopies are currently the preferred choice of molecular and cell biologists who seek to visualize the organization of specific protein species at the nanometer scale. Traditional super-resolution microscopy techniques have often been limited by sample thickness, axial resolution, specialist optical instrumentation and computationally-demanding software for assembling the images. In this chapter we detail the protocol, "enhanced expansion microscopy" (EExM), which combines X10 expansion microscopy with Airyscan confocal microscopy. EExM enables 15nm lateral (and 35nm axial) resolution, and is a relatively cheap, accessible option allowing single protein resolution for the non-specialist optical microscopists. We illustrate how EExM has been utilized for mapping the 3D topology of intracellular protein arrays at sample depths which are not always compatible with some of the traditional super-resolution techniques. We demonstrate that antibody markers can recognize and map post-translational modifications of individual proteins in addition to their 3D positions. Finally, we discuss the current uncertainties and validations in EExM which include the isotropy in gel expansion and assessment of the expansion factor (of resolution improvement).

摘要

分辨率是显微镜的一个关键特性,它可以使细胞的精细结构可视化。这些细胞内的许多生命过程都依赖于这些结构的三维(3D)复杂性。光学超分辨率显微镜目前是分子和细胞生物学家的首选,他们希望在纳米尺度上可视化特定蛋白质物种的组织。传统的超分辨率显微镜技术通常受到样品厚度、轴向分辨率、专业光学仪器以及用于组装图像的计算密集型软件的限制。在本章中,我们详细介绍了一种名为“增强扩展显微镜”(EExM)的方法,它将 X10 扩展显微镜与 Airyscan 共聚焦显微镜相结合。EExM 能够实现 15nm 的横向(和 35nm 的轴向)分辨率,并且是一种相对便宜、易于获取的选择,允许非专业光学显微镜专家获得单个蛋白质的分辨率。我们说明了 EExM 如何用于在某些传统超分辨率技术不兼容的样品深度下绘制细胞内蛋白质阵列的 3D 拓扑结构。我们证明了抗体标记物不仅可以识别和绘制单个蛋白质的翻译后修饰,还可以绘制其 3D 位置。最后,我们讨论了 EExM 中的当前不确定性和验证,包括凝胶扩展的各向同性和扩展因子(分辨率提高)的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验