Department of Chemistry, Stanford University, Stanford, California 94305, United States.
ACS Nano. 2022 May 24;16(5):7559-7571. doi: 10.1021/acsnano.1c11015. Epub 2022 May 9.
Surface topography on the scale of tens of nanometers to several micrometers substantially affects cell adhesion, migration, and differentiation. Recent studies using electron microscopy and super-resolution microscopy provide insight into how cells interact with surface nanotopography; however, the complex sample preparation and expensive imaging equipment required for these methods makes them not easily accessible. Expansion microscopy (ExM) is an affordable approach to image beyond the diffraction limit, but ExM cannot be readily applied to image the cell-material interface as most materials do not expand. Here, we develop a protocol that allows the use of ExM to resolve the cell-material interface with high resolution. We apply the technique to image the interface between U2OS cells and nanostructured substrates as well as the interface between primary osteoblasts with titanium dental implants. The high spatial resolution enabled by ExM reveals that although AP2 and F-actin both accumulate at curved membranes induced by vertical nanostructures, they are spatially segregated. Using ExM, we also reliably image how osteoblasts interact with roughened titanium implant surfaces below the diffraction limit; this is of great interest to understand osseointegration of the implants but has up to now been a significant technical challenge due to the irregular shape, the large volume, and the opacity of the titanium implants that have rendered them incompatible with other super-resolution techniques. We believe that our protocol will enable the use of ExM as a powerful tool for cell-material interface studies.
几十纳米到几微米的表面形貌极大地影响细胞的黏附、迁移和分化。最近使用电子显微镜和超分辨率显微镜的研究提供了关于细胞如何与表面纳米形貌相互作用的深入了解;然而,这些方法所需的复杂样本制备和昂贵的成像设备使得它们不易获得。扩展显微镜(ExM)是一种可扩展到衍射极限之外的成像方法,但 ExM 不能轻易地应用于成像细胞-材料界面,因为大多数材料不会扩展。在这里,我们开发了一种允许使用 ExM 以高分辨率解析细胞-材料界面的方案。我们将该技术应用于 U2OS 细胞与纳米结构基底之间的界面以及原代成骨细胞与钛牙科植入物之间的界面的成像。ExM 提供的高空间分辨率表明,尽管 AP2 和 F-肌动蛋白都在垂直纳米结构诱导的弯曲膜上积累,但它们在空间上是分开的。使用 ExM,我们还可靠地成像了成骨细胞如何在钛植入物粗糙表面下与低于衍射极限的表面相互作用;这对于理解植入物的骨整合非常重要,但迄今为止,由于钛植入物的不规则形状、大体积和不透明性,这一直是一个重大的技术挑战,这使得它们与其他超分辨率技术不兼容。我们相信,我们的方案将使 ExM 成为研究细胞-材料界面的有力工具。