Hua Peng, Xia Minglu, Onuki Yusuke, Sun Qingping
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
Frontier Research Centre for Applied Atomic Sciences, Ibaraki University, Tokai, Japan.
Nat Nanotechnol. 2021 Apr;16(4):409-413. doi: 10.1038/s41565-020-00837-5. Epub 2021 Jan 21.
Many established, but also potential future applications of NiTi-based shape memory alloys (SMA) in biomedical devices and solid-state refrigeration require long fatigue life with 10-10 duty cycles. However, improving the fatigue resistance of NiTi often compromises other mechanical and functional properties. Existing efforts to improve the fatigue resistance of SMA include composition control for coherent phase boundaries and microstructure control such as precipitation and grain-size reduction. Here, we extend the strategy to the nanoscale and improve fatigue resistance of NiTi via a hybrid heterogenous nanostructure. We produced a superelastic NiTi nanocomposite with crystalline and amorphous phases via severe plastic deformation and low-temperature annealing. The as-produced nanocomposite possesses a recoverable strain of 4.3% and a yield strength of 2.3 GPa. In cyclic compression experiments, the nanostructured NiTi micropillars endure over 10 reversible-phase-transition cycles under a stress of 1.8 GPa. We attribute the enhanced properties to the mutual strengthening of nanosized amorphous and crystalline phases where the amorphous phase suppresses dislocation slip in the crystalline phase while the crystalline phase hinders shear band propagation in the amorphous phase. The synergy of the properties of crystalline and amorphous phases at the nanoscale could be an effective method to improve fatigue resistance and strength of SMA.
镍钛基形状记忆合金(SMA)在生物医学设备和固态制冷领域的许多现有及潜在的未来应用都需要10-10循环次数下的长疲劳寿命。然而,提高镍钛合金的抗疲劳性往往会损害其他机械性能和功能特性。现有的提高形状记忆合金抗疲劳性的努力包括对相干相界的成分控制以及诸如沉淀和减小晶粒尺寸等微观结构控制。在此,我们将该策略扩展到纳米尺度,并通过混合异质纳米结构提高镍钛合金的抗疲劳性。我们通过严重塑性变形和低温退火制备了一种具有晶相和非晶相的超弹性镍钛纳米复合材料。所制备的纳米复合材料具有4.3%的可恢复应变和2.3 GPa的屈服强度。在循环压缩实验中,纳米结构的镍钛微柱在1.8 GPa的应力下承受超过10次可逆相变循环。我们将性能增强归因于纳米级非晶相和晶相的相互强化,其中非晶相抑制晶相中的位错滑移,而晶相阻碍非晶相中的剪切带传播。纳米尺度下晶相和非晶相性能的协同作用可能是提高形状记忆合金抗疲劳性和强度的有效方法。