Xu Zhibin, Li Mengmeng, Han Yilong
Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
Natl Sci Rev. 2025 Aug 20;12(9):nwaf336. doi: 10.1093/nsr/nwaf336. eCollection 2025 Sep.
The strength, [Formula: see text], of a polycrystal decreases with the mean grain diameter [Formula: see text] for [Formula: see text] atoms (i.e. Hall-Petch behavior) and increases for [Formula: see text] (i.e. inverse Hall-Petch behavior). Our simulations generalize [Formula: see text] to [Formula: see text], where [Formula: see text] is the mean thickness of amorphous grain boundaries of crystalline-amorphous composites. The maximum strength is reached at [Formula: see text] atoms for single-component face-centered-cubic solids and at [Formula: see text] for bidispersed or body-centered-cubic solids because of the different activation stresses of dislocation motions. The results explain recent alloy experiments and provide a way to exceed the maximum strength of polycrystals. Ductility and elastic moduli are also measured in the broad [Formula: see text] space. In regimes without a strength-ductility trade-off, the maximum ductility and ductile-brittle transitions are identified. These results obtained in [Formula: see text] space are important in solid mechanics and can guide the fabrication of crystalline-amorphous composites with outstanding mechanical properties.
对于多晶体,其强度[公式:见正文]在[公式:见正文]原子情况下随平均晶粒直径[公式:见正文]减小(即霍尔 - 佩奇行为),而在[公式:见正文]时增大(即反霍尔 - 佩奇行为)。我们的模拟将[公式:见正文]推广到[公式:见正文],其中[公式:见正文]是晶体 - 非晶复合材料中非晶晶界的平均厚度。由于位错运动的激活应力不同,对于单组分面心立方固体,在[公式:见正文]原子时达到最大强度,对于双分散或体心立方固体,在[公式:见正文]时达到最大强度。这些结果解释了近期的合金实验,并提供了一种超越多晶体最大强度的方法。还在广泛的[公式:见正文]空间中测量了延展性和弹性模量。在不存在强度 - 延展性权衡的区域,确定了最大延展性和延性 - 脆性转变。在[公式:见正文]空间中获得的这些结果在固体力学中很重要,并且可以指导具有优异力学性能的晶体 - 非晶复合材料的制造。