Suppr超能文献

成因介绍:天气和气候模型描述及其在大平原南部附近5天预测中的近地表温度误差

Introduction to CAUSES: Description of Weather and Climate Models and Their Near-Surface Temperature Errors in 5 day Hindcasts Near the Southern Great Plains.

作者信息

Morcrette C J, Van Weverberg K, Ma H-Y, Ahlgrimm M, Bazile E, Berg L K, Cheng A, Cheruy F, Cole J, Forbes R, Gustafson W I, Huang M, Lee W-S, Liu Y, Mellul L, Merryfield W J, Qian Y, Roehrig R, Wang Y-C, Xie S, Xu K-M, Zhang C, Klein S, Petch J

机构信息

Met Office, Exeter, UK.

Lawrence Livermore National Laboratory, Livermore, CA, USA.

出版信息

J Geophys Res Atmos. 2018 Mar 16;123(5):2655-2683. doi: 10.1002/2017JD027199. Epub 2018 Feb 16.

Abstract

We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally, a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.

摘要

我们介绍了美国上空云层与地表误差(CAUSES)项目,其目的是在众多数值模型中更好地理解导致美国中西部暖百叶箱温度偏差的物理过程。在这四篇配套论文的第一篇中,来自九个机构的11种不同模型进行了一系列为期5天的后报,每次均从再分析数据初始化。在描述了通用实验方案并详细说明每种模型配置后,从观测数据中得出了一个网格化温度数据集,用于表明所有模型在中西部部分地区都存在暖偏差。此外,在大多数模型中发现百叶箱温度偏差存在强烈的日循环。在一些模型中,偏差在中午左右最大,而在其他模型中,偏差在夜间最大。在能源部大气辐射测量南方大平原(SGP)站点,模型偏差显示延伸到大气中数公里。最后,为配套论文提供背景信息,其中利用SGP站点的观测数据评估导致那里误差的不同过程,结果表明,中西部有许多地点的误差日循环与SGP站点的误差日循环高度相关。这表明,使用位于SGP的仪器对模型进行详细评估得出的结论将代表在更大空间尺度上普遍存在的误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c21/7816730/4b111d2c95bd/nihms-1538717-f0015.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验