Suppr超能文献

利用卫星多频微波亮温观测数据对北半球土壤冻融动态进行深度学习估计。

Deep learning estimation of northern hemisphere soil freeze-thaw dynamics using satellite multi-frequency microwave brightness temperature observations.

作者信息

Donahue Kellen, Kimball John S, Du Jinyang, Bunt Fredrick, Colliander Andreas, Moghaddam Mahta, Johnson Jesse, Kim Youngwook, Rawlins Michael A

机构信息

Numerical Terradynamic Simulation Group, University of Montana, Missoula, MT, United States.

Department of Computer Science, University of Montana, Missoula, MT, United States.

出版信息

Front Big Data. 2023 Nov 17;6:1243559. doi: 10.3389/fdata.2023.1243559. eCollection 2023.

Abstract

Satellite microwave sensors are well suited for monitoring landscape freeze-thaw (FT) transitions owing to the strong brightness temperature (TB) or backscatter response to changes in liquid water abundance between predominantly frozen and thawed conditions. The FT retrieval is also a sensitive climate indicator with strong biophysical importance. However, retrieval algorithms can have difficulty distinguishing the FT status of soils from that of overlying features such as snow and vegetation, while variable land conditions can also degrade performance. Here, we applied a deep learning model using a multilayer convolutional neural network driven by AMSR2 and SMAP TB records, and trained on surface (~0-5 cm depth) soil temperature FT observations. Soil FT states were classified for the local morning (6 a.m.) and evening (6 p.m.) conditions corresponding to SMAP descending and ascending orbital overpasses, mapped to a 9 km polar grid spanning a five-year (2016-2020) record and Northern Hemisphere domain. Continuous variable estimates of the probability of frozen or thawed conditions were derived using a model cost function optimized against FT observational training data. Model results derived using combined multi-frequency (1.4, 18.7, 36.5 GHz) TBs produced the highest soil FT accuracy over other models derived using only single sensor or single frequency TB inputs. Moreover, SMAP L-band (1.4 GHz) TBs provided enhanced soil FT information and performance gain over model results derived using only AMSR2 TB inputs. The resulting soil FT classification showed favorable and consistent performance against soil FT observations from ERA5 reanalysis (mean percent accuracy, MPA: 92.7%) and weather stations (MPA: 91.0%). The soil FT accuracy was generally consistent between morning and afternoon predictions and across different land covers and seasons. The model also showed better FT accuracy than ERA5 against regional weather station measurements (91.0% vs. 86.1% MPA). However, model confidence was lower in complex terrain where FT spatial heterogeneity was likely beneath the effective model grain size. Our results provide a high level of precision in mapping soil FT dynamics to improve understanding of complex seasonal transitions and their influence on ecological processes and climate feedbacks, with the potential to inform Earth system model predictions.

摘要

卫星微波传感器非常适合监测景观的冻融(FT)转变,这是因为在主要处于冻结和解冻状态之间时,液态水含量的变化会引起强烈的亮温(TB)或后向散射响应。冻融反演也是一个具有重要生物物理意义的敏感气候指标。然而,反演算法在区分土壤的冻融状态与诸如积雪和植被等上层特征的冻融状态时可能会遇到困难,而且多变的土地条件也会降低性能。在此,我们应用了一个深度学习模型,该模型使用由先进微波扫描辐射计2号(AMSR2)和土壤湿度主动被动遥感卫星(SMAP)的亮温记录驱动的多层卷积神经网络,并基于地表(约0 - 5厘米深度)土壤温度的冻融观测数据进行训练。针对与SMAP降轨和升轨过境相对应的当地上午(上午6点)和晚上(下午6点)的情况,对土壤的冻融状态进行分类,并将其映射到一个覆盖五年(2016 - 2020年)记录和北半球区域的9公里极地网格上。使用针对冻融观测训练数据进行优化的模型成本函数,得出冻结或解冻状态概率的连续变量估计值。与仅使用单个传感器或单频亮温输入得出的其他模型相比,使用组合多频(1.4、18.7、36.5吉赫)亮温得出的模型结果在土壤冻融方面具有最高的精度。此外,与仅使用AMSR2亮温输入得出的模型结果相比,SMAP L波段(1.4吉赫)亮温提供了增强的土壤冻融信息和性能提升。所得的土壤冻融分类结果与欧洲中期天气预报中心(ECMWF)第五代全球气候再分析(ERA5)的土壤冻融观测结果(平均准确率,MPA:92.7%)和气象站的观测结果(MPA:91.0%)相比,表现良好且一致。土壤冻融精度在上午和下午的预测之间以及不同土地覆盖和季节之间总体上是一致的。该模型在区域气象站测量方面的冻融精度也比ERA5更高(MPA为91.0%对86.1%)。然而,在复杂地形中,模型的置信度较低,因为在这些地区冻融的空间异质性可能低于有效模型粒度。我们的结果在绘制土壤冻融动态方面提供了高精度,有助于更好地理解复杂的季节转变及其对生态过程和气候反馈的影响,并有潜力为地球系统模型预测提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/397c/10690831/77ed50312154/fdata-06-1243559-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验