Laboratory of Physical Chemistry, Ufa Institute of Chemistry UFRS RAS, Ufa, Russia.
Laboratory of Bioinformatics, I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
J Biomol Struct Dyn. 2022 Aug;40(12):5481-5492. doi: 10.1080/07391102.2020.1871414. Epub 2021 Jan 22.
ABSTARCTThe development of new anti-influenza drugs remains an active area, and efforts in this direction will likely continue far into the future. In this paper, we present the results of a theoretical study explaining the mechanisms behind the antiviral activity of camphor derivatives. These include camphecene and a number of its analogues. The compounds tested can inhibit hemagglutinin (HA) by binding to it at two possible sites. Moreover, the binding site located at the site of proteolysis is the most important. Serial passaging of influenza in the presence of camphecene leads to the formation of mutation-associated resistance. Specifically, camphecene causes a significant mutation in HA (V615L). This substitution likely reduces the affinity of the compound for the binding site due to steric restriction of the positioning of camphecene in the binding cavity. Molecular dynamics (MD) simulation results show that the mutant HA is a more stable structure in terms of thermodynamics. In other words, launching conformational rearrangements preceding the transition from pre- to post-fusion requires more energy than in wild type HA. This may well explain the lower virulence seen with the camphecene-resistant strain.
摘要 开发新的抗流感药物仍然是一个活跃的领域,未来很可能会继续在这一方向上努力。本文介绍了一项理论研究的结果,该研究解释了樟脑衍生物抗病毒活性的机制。这些化合物包括莰烯和许多它的类似物。测试的化合物可以通过与血凝素(HA)结合在两个可能的部位来抑制其活性。此外,位于蛋白水解部位的结合部位是最重要的。在莰烯存在的情况下,流感的连续传代会导致与突变相关的耐药性的形成。具体来说,莰烯导致 HA(V615L)发生显著突变。由于樟脑在结合腔中的位置受到空间位阻的限制,这种取代可能会降低化合物与结合位点的亲和力。分子动力学(MD)模拟结果表明,突变 HA 在热力学上是一种更稳定的结构。换句话说,与野生型 HA 相比,启动融合前到融合后的构象重排需要更多的能量。这很好地解释了具有抗樟脑耐药性的菌株的毒力降低的现象。