Suppr超能文献

iEnhancer-KL:一种通过核苷酸组成的位置特异性识别增强子的新型双层预测器。

iEnhancer-KL: A Novel Two-Layer Predictor for Identifying Enhancers by Position Specific of Nucleotide Composition.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 Nov-Dec;18(6):2809-2815. doi: 10.1109/TCBB.2021.3053608. Epub 2021 Dec 8.

Abstract

An enhancer is a short region of DNA with the ability to recruit transcription factors and their complexes, increasing the likelihood of the transcription of a particular gene. Considering the importance of enhancers, enhancer identification is a prevailing problem in computational biology. In this paper, we propose a novel two-layer enhancer predictor called iEnhancer-KL, using computational biology algorithms to identify enhancers and then classify these enhancers into strong or weak types. Kullback-Leibler (KL) divergence is creatively taken into consideration to improve the feature extraction method PSTNPss. Then, LASSO is used to reduce the dimension of features and finally helps to get better prediction performance. Furthermore, the selected features are tested on several machine learning models, and the SVM algorithm achieves the best performance. The rigorous cross-validation indicates that our predictor is remarkably superior to the existing state-of-the-art methods with an Acc of 84.23 percent and the MCC of 0.6849 for identifying enhancers. Our code and results can be freely downloaded from https://github.com/Not-so-middle/iEnhancer-KL.git.

摘要

增强子是具有招募转录因子及其复合物能力的短 DNA 区域,增加了特定基因转录的可能性。考虑到增强子的重要性,增强子识别是计算生物学中的一个热门问题。在本文中,我们提出了一种名为 iEnhancer-KL 的新型双层增强子预测器,使用计算生物学算法来识别增强子,然后将这些增强子分类为强或弱类型。创造性地考虑了 Kullback-Leibler(KL)散度来改进特征提取方法 PSTNPss。然后,LASSO 用于降低特征的维度,最终有助于获得更好的预测性能。此外,所选特征在几种机器学习模型上进行了测试,SVM 算法取得了最佳性能。严格的交叉验证表明,我们的预测器在识别增强子时的表现明显优于现有的最先进方法,Acc 为 84.23%,MCC 为 0.6849。我们的代码和结果可以从 https://github.com/Not-so-middle/iEnhancer-KL.git 上免费下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验