School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China.
School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China.
Biomolecules. 2022 Jul 17;12(7):995. doi: 10.3390/biom12070995.
Enhancers are short DNA segments that play a key role in biological processes, such as accelerating transcription of target genes. Since the enhancer resides anywhere in a genome sequence, it is difficult to precisely identify enhancers. We presented a bi-directional long-short term memory (Bi-LSTM) and attention-based deep learning method (Enhancer-LSTMAtt) for enhancer recognition. Enhancer-LSTMAtt is an end-to-end deep learning model that consists mainly of deep residual neural network, Bi-LSTM, and feed-forward attention. We extensively compared the Enhancer-LSTMAtt with 19 state-of-the-art methods by 5-fold cross validation, 10-fold cross validation and independent test. Enhancer-LSTMAtt achieved competitive performances, especially in the independent test. We realized Enhancer-LSTMAtt into a user-friendly web application. Enhancer-LSTMAtt is applicable not only to recognizing enhancers, but also to distinguishing strong enhancer from weak enhancers. Enhancer-LSTMAtt is believed to become a promising tool for identifying enhancers.
增强子是在生物过程中起关键作用的短 DNA 片段,例如加速靶基因的转录。由于增强子位于基因组序列的任何位置,因此很难精确定位增强子。我们提出了一种基于双向长短时记忆(Bi-LSTM)和注意力机制的深度学习方法(Enhancer-LSTMAtt)来识别增强子。Enhancer-LSTMAtt 是一个端到端的深度学习模型,主要由深度残差神经网络、Bi-LSTM 和前馈注意力组成。我们通过 5 折交叉验证、10 折交叉验证和独立测试,将 Enhancer-LSTMAtt 与 19 种最先进的方法进行了广泛比较。Enhancer-LSTMAtt 表现出了有竞争力的性能,特别是在独立测试中。我们将 Enhancer-LSTMAtt 实现为一个用户友好的网络应用程序。Enhancer-LSTMAtt 不仅可用于识别增强子,还可用于区分强增强子和弱增强子。我们相信 Enhancer-LSTMAtt 将成为识别增强子的有前途的工具。