Suppr超能文献

增强子-LSTMAtt:一种基于 Bi-LSTM 和注意力的深度学习增强子识别方法。

Enhancer-LSTMAtt: A Bi-LSTM and Attention-Based Deep Learning Method for Enhancer Recognition.

机构信息

School of Electrical Engineering, Shaoyang University, Shaoyang 422000, China.

School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China.

出版信息

Biomolecules. 2022 Jul 17;12(7):995. doi: 10.3390/biom12070995.

Abstract

Enhancers are short DNA segments that play a key role in biological processes, such as accelerating transcription of target genes. Since the enhancer resides anywhere in a genome sequence, it is difficult to precisely identify enhancers. We presented a bi-directional long-short term memory (Bi-LSTM) and attention-based deep learning method (Enhancer-LSTMAtt) for enhancer recognition. Enhancer-LSTMAtt is an end-to-end deep learning model that consists mainly of deep residual neural network, Bi-LSTM, and feed-forward attention. We extensively compared the Enhancer-LSTMAtt with 19 state-of-the-art methods by 5-fold cross validation, 10-fold cross validation and independent test. Enhancer-LSTMAtt achieved competitive performances, especially in the independent test. We realized Enhancer-LSTMAtt into a user-friendly web application. Enhancer-LSTMAtt is applicable not only to recognizing enhancers, but also to distinguishing strong enhancer from weak enhancers. Enhancer-LSTMAtt is believed to become a promising tool for identifying enhancers.

摘要

增强子是在生物过程中起关键作用的短 DNA 片段,例如加速靶基因的转录。由于增强子位于基因组序列的任何位置,因此很难精确定位增强子。我们提出了一种基于双向长短时记忆(Bi-LSTM)和注意力机制的深度学习方法(Enhancer-LSTMAtt)来识别增强子。Enhancer-LSTMAtt 是一个端到端的深度学习模型,主要由深度残差神经网络、Bi-LSTM 和前馈注意力组成。我们通过 5 折交叉验证、10 折交叉验证和独立测试,将 Enhancer-LSTMAtt 与 19 种最先进的方法进行了广泛比较。Enhancer-LSTMAtt 表现出了有竞争力的性能,特别是在独立测试中。我们将 Enhancer-LSTMAtt 实现为一个用户友好的网络应用程序。Enhancer-LSTMAtt 不仅可用于识别增强子,还可用于区分强增强子和弱增强子。我们相信 Enhancer-LSTMAtt 将成为识别增强子的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81b0/9313278/5a3ef0893a83/biomolecules-12-00995-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验