García S, Sanz M A, Amigo V, Colomina P, Carrera M D, Lorenzo J I, Sanz G F
Sección de Hematología Clínica, Hospital La Fe, Valencia, Spain.
Am J Hematol. 1988 Mar;27(3):163-8. doi: 10.1002/ajh.2830270303.
A retrospective multivariate analysis of 37 clinical, biochemical, and hematological data was performed in 107 cases of primary myelodysplastic syndromes (MDS) in order to recognize their prognostic significance. The most important individual variables, isolated in a previous univariate analysis, were placed in a multiple regression modeling procedure to identify major significant prognostic factors. Multivariate analysis tends to identify prognostic variables containing significant independent predictive information. Characteristics were examined on both continuous and binary bases. The FAB classification was the first parameter entered in regression equations on both models, followed by platelet count, hemoglobin level, and circulating erythroblasts in the binary model, and by hemoglobin level, systemic symptoms, platelet count, age, and dyserythropoiesis in the continuous model. Our analysis confirms FAB classification as the main prognostic factor in MDS, supports the previously noted predictive value of platelet count, hemoglobin level, and age, and recognises the importance of circulating erythroblasts, systemic symptoms, and dyserythropoiesis as prognostic characteristics in MDS.
为了认识其预后意义,对107例原发性骨髓增生异常综合征(MDS)患者的37项临床、生化和血液学数据进行了回顾性多变量分析。在先前的单变量分析中分离出的最重要的个体变量,被纳入多元回归建模程序,以确定主要的显著预后因素。多变量分析倾向于识别包含显著独立预测信息的预后变量。对连续和二元特征均进行了检查。FAB分类是两个模型回归方程中输入的第一个参数,在二元模型中其次是血小板计数、血红蛋白水平和循环成红细胞,在连续模型中其次是血红蛋白水平、全身症状、血小板计数、年龄和红细胞生成异常。我们的分析证实FAB分类是MDS的主要预后因素,支持先前指出的血小板计数、血红蛋白水平和年龄的预测价值,并认识到循环成红细胞、全身症状和红细胞生成异常作为MDS预后特征的重要性。