Suppr超能文献

基于模型的基因型和祖先估计,用于具有混合倍性的潜在杂种。

Model-based genotype and ancestry estimation for potential hybrids with mixed-ploidy.

机构信息

Department of Botany, University of Wyoming, Laramie, WY, USA.

Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA.

出版信息

Mol Ecol Resour. 2021 Jul;21(5):1434-1451. doi: 10.1111/1755-0998.13330. Epub 2021 Feb 9.

Abstract

Non-random mating among individuals can lead to spatial clustering of genetically similar individuals and population stratification. This deviation from panmixia is commonly observed in natural populations. Consequently, individuals can have parentage in single populations or involving hybridization between differentiated populations. Accounting for this mixture and structure is important when mapping the genetics of traits and learning about the formative evolutionary processes that shape genetic variation among individuals and populations. Stratified genetic relatedness among individuals is commonly quantified using estimates of ancestry that are derived from a statistical model. Development of these models for polyploid and mixed-ploidy individuals and populations has lagged behind those for diploids. Here, we extend and test a hierarchical Bayesian model, called entropy, which can use low-depth sequence data to estimate genotype and ancestry parameters in autopolyploid and mixed-ploidy individuals (including sex chromosomes and autosomes within individuals). Our analysis of simulated data illustrated the trade-off between sequencing depth and genome coverage and found lower error associated with low-depth sequencing across a larger fraction of the genome than with high-depth sequencing across a smaller fraction of the genome. The model has high accuracy and sensitivity as verified with simulated data and through analysis of admixture among populations of diploid and tetraploid Arabidopsis arenosa.

摘要

个体间的非随机交配可能导致遗传相似个体的空间聚类和群体分层。这种与泛群混合的偏差在自然种群中很常见。因此,个体的亲代可能来自单一群体,也可能涉及分化群体之间的杂交。在绘制性状的遗传图谱并了解塑造个体和群体间遗传变异的形成性进化过程时,考虑这种混合物和结构非常重要。个体间分层的遗传相关性通常使用来自统计模型的祖先估计来量化。多倍体和混合倍性个体和群体的这些模型的发展落后于二倍体的模型。在这里,我们扩展并测试了一个层次贝叶斯模型,称为熵,该模型可以使用低深度序列数据来估计同源多倍体和混合倍性个体(包括性染色体和个体内的常染色体)中的基因型和祖先参数。我们对模拟数据的分析说明了测序深度和基因组覆盖范围之间的权衡关系,并发现与小部分基因组的高深度测序相比,更大基因组部分的低深度测序具有更低的误差。该模型具有很高的准确性和灵敏度,通过模拟数据和对二倍体和四倍体拟南芥间种群混合的分析得到了验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验