Bartolić Paolo, Morgan Emma J, Padilla-García Nélida, Kolář Filip
Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, CZ-128 01 Prague, Czech Republic.
Departamento de Botánica y Fisiología Vegetal, University of Salamanca, 37007 Salamanca, Spain.
Ann Bot. 2024 Oct 30;134(4):537-550. doi: 10.1093/aob/mcae096.
Whole-genome duplication (polyploidization) is a dominant force in sympatric speciation, particularly in plants. Genome doubling instantly poses a barrier to gene flow owing to the strong crossing incompatibilities between individuals differing in ploidy. The strength of the barrier, however, varies from species to species and recent genetic investigations revealed cases of rampant interploidy introgression in multiple ploidy-variable species.
Here, we review novel insights into the frequency of interploidy gene flow in natural systems and summarize the underlying mechanisms promoting interploidy gene flow. Field surveys, occasionally complemented by crossing experiments, suggest frequent opportunities for interploidy gene flow, particularly in the direction from diploid to tetraploid, and between (higher) polyploids. However, a scarcity of accompanying population genetic evidence and a virtual lack of integration of these approaches leave the underlying mechanisms and levels of realized interploidy gene flow in nature largely unknown. Finally, we discuss potential consequences of interploidy genome permeability on polyploid speciation and adaptation and highlight novel avenues that have just recently been opened by the very first genomic studies of ploidy-variable species. Standing in stark contrast with rapidly accumulating evidence for evolutionary importance of homoploid introgression, similar cases in ploidy-variable systems are yet to be documented.
The genomics era provides novel opportunity to re-evaluate the role of interploidy introgression in speciation and adaptation. To achieve this goal, interdisciplinary studies bordering ecology and population genetics and genomics are needed.
全基因组复制(多倍体化)是同域物种形成中的主导力量,在植物中尤为如此。基因组加倍会立即对基因流动造成障碍,这是因为不同倍性的个体之间存在强烈的杂交不亲和性。然而,这种障碍的强度因物种而异,最近的遗传学研究揭示了多个倍性可变物种中存在大量的倍性间基因渐渗现象。
在这里,我们回顾了对自然系统中倍性间基因流动频率的新见解,并总结了促进倍性间基因流动的潜在机制。实地调查偶尔辅以杂交实验,表明倍性间基因流动的机会频繁,特别是从二倍体到四倍体的方向,以及在(更高)多倍体之间。然而,缺乏相应的群体遗传学证据,并且这些方法几乎没有整合,使得自然中倍性间基因流动的潜在机制和实际水平在很大程度上仍不清楚。最后,我们讨论了倍性间基因组通透性对多倍体物种形成和适应的潜在影响,并强调了最近对倍性可变物种的首次基因组研究刚刚开辟的新途径。与单倍体渐渗在进化重要性方面迅速积累的证据形成鲜明对比的是,倍性可变系统中的类似情况尚未得到记录。
基因组学时代为重新评估倍性间基因渐渗在物种形成和适应中的作用提供了新机会。为实现这一目标,需要开展生态学、群体遗传学和基因组学交叉的研究。