Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan.
Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Showa-Ku, Nagoya, 466-8550, Japan.
Arch Biochem Biophys. 2021 Mar 30;700:108762. doi: 10.1016/j.abb.2021.108762. Epub 2021 Jan 20.
Non-thermal plasma (NTP) devices generate reactive oxygen species (ROS) and reactive nitrogen species, such as singlet oxygen (O), superoxide (O), hydroxyl radical (OH), hydrogen peroxide (HO), ozone, and nitric oxide at near-physiological temperature. In preclinical studies, NTP promotes blood coagulation, wound healing with disinfection, and selective killing of cancer cells. Although these biological effects of NTP have been widely explored, the stoichiometric quantitation of ROS in the liquid phase has not been performed in the presence of biocompatible reducing agents, which may modify the final biological effects of NTP. Here, we utilized electron paramagnetic resonance spectroscopy to quantitate OH, using a spin-trapping probe 5,5-dimethyl-1-pyrroline-N-oxide; O, using a fluorescent probe; and O and HO, using luminescent probes, after NTP exposure in the presence of antioxidants. l-ascorbate (Asc) at 50 μM concentration (physiological concentration in serum) significantly scavenged OH, whereas (-)-epigallocatechin gallate (EGCG) and α-tocopherol were also effective at performing scavenging activities at 250 μM concentrations. Asc significantly scavenged O and HO at 100 μM. l-Dehydroascorbate (DHA), an oxidized form of Asc, degraded HO, whereas it did not quench OH or O, which are sources of HO. Furthermore, EGCG efficiently scavenged NTP-induced O, O, and HO in Chelex-treated water. These results indicate that the redox cycling of Asc/DHA and metabolites of DHA are important to be considered when applying NTP to cells and tissues. Additionally, ROS-reducing compounds, such as EGCG, affect the outcome. Further studies are warranted to elucidate the interaction between ROS and biomolecules to promote the medical applications of NTP.
非热等离子体(NTP)设备在接近生理温度的条件下产生活性氧(ROS)和活性氮(RNS)物种,如单线态氧(O)、超氧自由基(O)、羟自由基(OH)、过氧化氢(HO)、臭氧和一氧化氮。在临床前研究中,NTP 促进血液凝固、消毒促进伤口愈合和选择性杀死癌细胞。尽管 NTP 的这些生物学效应已经被广泛探索,但在存在生物相容性还原剂的情况下,液相中 ROS 的化学计量定量尚未进行,这可能会改变 NTP 的最终生物学效应。在这里,我们利用电子顺磁共振波谱法利用自旋捕获探针 5,5-二甲基-1-吡咯啉-N-氧化物(5,5-dimethyl-1-pyrroline-N-oxide)来定量检测 OH;利用荧光探针检测 O;利用发光探针检测 O 和 HO,在 NTP 暴露于抗氧化剂的情况下。浓度为 50 μM 的 l-抗坏血酸(Asc)(血清中的生理浓度)显著清除 OH,而浓度为 250 μM 的(-)-表没食子儿茶素没食子酸酯(EGCG)和 α-生育酚也具有有效的清除作用。浓度为 100 μM 的 Asc 显著清除 O 和 HO。作为 Asc 的氧化形式的 l-脱氢抗坏血酸(DHA)降解 HO,而不淬灭 OH 或 O,后者是 HO 的来源。此外,EGCG 有效地清除了 Chelex 处理水中的 NTP 诱导的 O、O 和 HO。这些结果表明,当将 NTP 应用于细胞和组织时,需要考虑 Asc/DHA 的氧化还原循环及其代谢物。此外,ROS 还原化合物,如 EGCG,会影响结果。需要进一步的研究来阐明 ROS 与生物分子之间的相互作用,以促进 NTP 的医学应用。