Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN, 37831, United States.
Manufacturing Demonstration Facility, Manufacturing Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, United States; Department of Mechanical Engineering, Pellissippi State Community College, 10915 Hardin Valley Road, Knoxville, TN, 37932, United States.
Carbohydr Polym. 2021 Mar 15;256:117525. doi: 10.1016/j.carbpol.2020.117525. Epub 2020 Dec 28.
Microfibrillated cellulose (MFC) is widely used as a reinforcement filler for biocomposites due to its unique properties. However, the challenge of drying MFC and the incompatibility between nanocellulose and polymer matrix still limits the mechanical performance of MFC-reinforced biocomposites. In this study, we used a water-based transesterification reaction to functionalize MFC and explored the capability of oven-dried MFC as a reinforcement filler for polylactic acid (PLA). Remarkably, this oven-dried, vinyl laurate-modified MFC improved the tensile strength by 38 % and Young's modulus by 71 % compared with neat PLA. Our results suggested improved compatibility and dispersion of the fibrils in PLA after modification. This study demonstrated that scalable water-based surface modification and subsequent straightforward oven drying could be a facile method for effectively drying cellulose nanomaterials. The method helps significantly disperse fibrils in polymers and enhances the mechanical properties of microfibrillar cellulose-reinforced biocomposites.
微原纤纤维素(MFC)由于其独特的性能,被广泛用作生物复合材料的增强填料。然而,MFC 的干燥问题以及纳米纤维素与聚合物基体之间的不兼容性仍然限制了 MFC 增强生物复合材料的机械性能。在本研究中,我们使用水基酯交换反应对 MFC 进行功能化,并探索了经烤箱干燥的 MFC 作为聚乳酸(PLA)增强填料的能力。值得注意的是,与纯 PLA 相比,经烘焙、月桂酸乙烯酯改性的 MFC 可将拉伸强度提高 38%,杨氏模量提高 71%。我们的结果表明,在改性后,纤维在 PLA 中的相容性和分散性得到了改善。本研究表明,可扩展的基于水的表面改性以及随后的直接烤箱干燥可能是一种有效干燥纤维素纳米材料的简便方法。该方法有助于显著提高纤维在聚合物中的分散性,并增强微原纤纤维素增强生物复合材料的机械性能。