St Vincent's Institute, Fitzroy, VIC, Australia.
Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
Diabetologia. 2021 Apr;64(4):878-889. doi: 10.1007/s00125-020-05378-z. Epub 2021 Jan 23.
AIMS/HYPOTHESIS: Stimulator of IFN genes (STING) is a central hub for cytosolic nucleic acid sensing and its activation results in upregulation of type I IFN production in innate immune cells. A type I IFN gene signature seen before the onset of type 1 diabetes has been suggested as a driver of disease initiation both in humans and in the NOD mouse model. A possible source of type I IFN is through activation of the STING pathway. Recent studies suggest that STING also has antiproliferative and proapoptotic functions in T cells that are independent of IFN. To investigate whether STING is involved in autoimmune diabetes, we examined the impact of genetic deletion of STING in NOD mice.
CRISPR/Cas9 gene editing was used to generate STING-deficient NOD mice. Quantitative real-time PCR was used to assess the level of type I IFN-regulated genes in islets from wild-type and STING-deficient NOD mice. The number of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific CD8 T cells was determined by magnetic bead-based MHC tetramer enrichment and flow cytometry. The incidence of spontaneous diabetes and diabetes after adoptive transfer of T cells was determined.
STING deficiency partially attenuated the type I IFN gene signature in islets but did not suppress insulitis. STING-deficient NOD mice accumulated an increased number of IGRP-specific CD8 T cells (2878 ± 642 cells in NOD.STING mice and 728.8 ± 196 cells in wild-type NOD mice) in peripheral lymphoid tissue, associated with a higher incidence of spontaneous diabetes (95.5% in NOD.STING mice and 86.2% in wild-type NOD mice). Splenocytes from STING-deficient mice rapidly induced diabetes after adoptive transfer into irradiated NOD recipients (median survival 75 days for NOD recipients of NOD.STING mouse splenocytes and 121 days for NOD recipients of NOD mouse splenocytes).
CONCLUSIONS/INTERPRETATION: Data suggest that sensing of endogenous nucleic acids through the STING pathway may be partially responsible for the type I IFN gene signature but not autoimmunity in NOD mice. Our results show that the STING pathway may play an unexpected intrinsic role in suppressing the number of diabetogenic T cells.
目的/假设:干扰素基因刺激物(STING)是细胞质核酸感应的中心枢纽,其激活导致先天免疫细胞中 I 型 IFN 产生的上调。在 1 型糖尿病发病前出现的 I 型 IFN 基因特征被认为是人类和 NOD 小鼠模型中疾病起始的驱动因素。I 型 IFN 的一个可能来源是通过 STING 途径的激活。最近的研究表明,STING 在 T 细胞中也具有独立于 IFN 的抗增殖和促凋亡功能。为了研究 STING 是否参与自身免疫性糖尿病,我们检查了 NOD 小鼠中 STING 基因缺失的影响。
使用 CRISPR/Cas9 基因编辑生成 STING 缺陷型 NOD 小鼠。使用定量实时 PCR 评估野生型和 STING 缺陷型 NOD 小鼠胰岛中 I 型 IFN 调节基因的水平。通过磁性珠基于 MHC 四聚体富集和流式细胞术确定胰岛特异性葡萄糖-6-磷酸酶催化亚基相关蛋白(IGRP)特异性 CD8 T 细胞的数量。通过测定自发糖尿病的发生率和 T 细胞过继转移后的糖尿病发生率来确定。
STING 缺失部分减弱了胰岛中的 I 型 IFN 基因特征,但并未抑制胰岛炎。STING 缺陷型 NOD 小鼠在外周淋巴组织中积累了更多的 IGRP 特异性 CD8 T 细胞(NOD.STING 小鼠中为 2878±642 个细胞,野生型 NOD 小鼠中为 728.8±196 个细胞),与自发性糖尿病的发生率更高相关(NOD.STING 小鼠中为 95.5%,野生型 NOD 小鼠中为 86.2%)。来自 STING 缺陷型小鼠的脾细胞在过继转移到辐射 NOD 受体后迅速诱导糖尿病(NOD.STING 小鼠脾细胞受体的中位存活时间为 75 天,NOD 小鼠脾细胞受体的中位存活时间为 121 天)。
结论/解释:数据表明,通过 STING 途径感应内源性核酸可能部分负责 NOD 小鼠中的 I 型 IFN 基因特征,但不是自身免疫。我们的结果表明,STING 途径可能在抑制致糖尿病 T 细胞数量方面发挥意想不到的内在作用。