School of Environmental and Forest Sciences, University of Washington, 3714 Garfield Place, NE, 98195 Seattle, WA, United States.
School of Environmental and Forest Sciences, University of Washington, 3714 Garfield Place, NE, 98195 Seattle, WA, United States; The Nature Conservancy, Washington Field Office, 74 Wall Street, 98121 Seattle, WA, United States.
Sci Total Environ. 2021 May 1;767:144280. doi: 10.1016/j.scitotenv.2020.144280. Epub 2020 Dec 24.
As the global toll on human lives and ecosystems exacted by urban pollution grows, planning tools still lack the resolution to identify priority sites where toxic pollution can be most efficiently averted at a spatial scale that matches funding and management. Here we tackle this gap by demonstrating novel scalable methods to monitor and predict urban metal pollution at high resolution (<5 m) across large areas (10,000-100,000 km) to guide pollution reduction and stormwater management. We showcase and calibrate predictive models of Zn, Cu, and a synthetic index of pollution for the Puget Sound region of Washington State, U.S., a densely urbanized yet important ecosystem of conservation interest, and exemplify their transferability across the entire United States. We leveraged widely and freely available datasets of car traffic characteristics and land use as predictor variables and trained the models with biological monitoring data of metal concentrations in epiphytic moss from >100 trees based on new rapid and low-cost protocols introduced in this study. Our model predictions, showing that 50% of the total Cu and Zn pollution across the Puget Sound watershed is deposited over only 3.3% of the land area, will allow cities to effectively and efficiently target toxic hotspots.
随着城市污染对人类生命和生态系统造成的全球损失不断增加,规划工具仍然缺乏分辨率,无法确定在与资金和管理相匹配的空间尺度上,可以最有效地避免有毒污染的优先地点。在这里,我们通过展示新的可扩展方法来解决这一差距,这些方法可以在大区域(10,000-100,000 平方公里)内以高分辨率(<5 米)监测和预测城市金属污染,以指导污染减排和雨水管理。我们展示和校准了美国华盛顿州普吉特海湾地区 Zn、Cu 和污染综合指数的预测模型,该地区是一个人口稠密但具有重要保护意义的生态系统,同时还说明了它们在美国全境的可转移性。我们利用广泛且免费提供的汽车交通特征和土地利用数据集作为预测变量,并利用本研究中引入的新的快速和低成本协议,基于 100 多棵树上的附生苔藓中的金属浓度生物监测数据来训练模型。我们的模型预测表明,普吉特海湾流域 50%的总 Cu 和 Zn 污染仅沉积在土地面积的 3.3%上,这将使城市能够有效地针对有毒热点。