Hobson Eric C, Li Weiping, Juliar Benjamin A, Putnam Andrew J, Stegemann Jan P, Deng Cheri X
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
Biomaterials. 2021 Feb;269:120676. doi: 10.1016/j.biomaterials.2021.120676. Epub 2021 Jan 15.
Resonant Acoustic Rheometry (RAR) is a new, non-contact technique to characterize the mechanical properties of soft and viscoelastic biomaterials, such as hydrogels, that are used to mimic the extracellular matrix in tissue engineering. RAR uses a focused ultrasound pulse to generate a microscale perturbation at the sample surface and tracks the ensuing surface wave using pulse-echo ultrasound. The frequency spectrum of the resonant surface waves is analyzed to extract viscoelastic material properties. In this study, RAR was used to characterize fibrin, gelatin, and agarose hydrogels. Single time point measurements of gelled samples with static mechanical properties showed that RAR provided consistent quantitative data and measured intrinsic material characteristics independent of ultrasound parameters. RAR was also used to longitudinally track dynamic changes in viscoelastic properties over the course of fibrin gelation, revealing distinct phase and material property transitions. Application of RAR was verified using finite element modeling and the results were validated against rotational shear rheometry. Importantly, RAR circumvents some limitations of conventional rheology methods and can be performed in a high-throughput manner using conventional labware. Overall, these studies demonstrate that RAR can be a valuable tool to noninvasively quantify the viscoelastic mechanical properties of soft hydrogel biomaterials.
共振声学流变学(RAR)是一种新型非接触技术,用于表征软质和粘弹性生物材料(如用于组织工程中模拟细胞外基质的水凝胶)的力学性能。RAR使用聚焦超声脉冲在样品表面产生微观扰动,并利用脉冲回波超声跟踪随后产生的表面波。通过分析共振表面波的频谱来提取粘弹性材料特性。在本研究中,RAR用于表征纤维蛋白、明胶和琼脂糖水凝胶。对具有静态力学性能的凝胶化样品进行的单时间点测量表明,RAR提供了一致的定量数据,并测量了与超声参数无关的固有材料特性。RAR还用于纵向跟踪纤维蛋白凝胶化过程中粘弹性特性的动态变化,揭示了不同的阶段和材料特性转变。使用有限元建模验证了RAR的应用,并将结果与旋转剪切流变学进行了对比验证。重要的是,RAR克服了传统流变学方法的一些局限性,并且可以使用传统实验室器具以高通量方式进行。总体而言,这些研究表明,RAR可以成为一种用于无创量化软质水凝胶生物材料粘弹性力学性能的有价值工具。