Suppr超能文献

基于拉曼光谱的甲醇-汽油中甲醇的定量分析的混合变量选择策略与随机森林(RF)耦合。

Hybrid variable selection strategy coupled with random forest (RF) for quantitative analysis of methanol in methanol-gasoline via Raman spectroscopy.

机构信息

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.

Xi'an WanLong Pharmaceutical Co., Ltd., Xi'an, 710119, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2021 Apr 15;251:119430. doi: 10.1016/j.saa.2021.119430. Epub 2021 Jan 5.

Abstract

With the trend of portable and miniaturization, Raman spectrometer requires more advanced analytical methods providing more rapid and accurate analysis performance for in-situ analysis. In this work, a hybrid variable selection method based on V-WSP and variable importance measurement (VIM) coupled with random forest (RF) was used to improve the quantitative analysis performance of portable laser Raman instruments for quantitative analysis of methanol content in methanol gasoline. First, five preprocessing methods were applied to reduce the infection information in the raw spectra, respectively. Based on the spectra data processed by multivariate scattering correction (MSC), V-WSP was employed to filter the infection or redundant information in Raman spectroscopy, and 579 variables were obtained when the correlation threshold is 0.9600. Then, the variables were further eliminated by VIM. Finally, 43 variables were obtained by the V-WSP-VIM method. In data processing, out of bag (OOB) error estimation and 10-flod cross validation (CV) were applied to optimize the parameters of preprocessing methods, V-WSP, VIM and RF model. The results fully demonstrated that compared with the RF model based on raw spectra, the RF model based on V-WSP-VIM method can achieve a better prediction performance for the quantitative analysis of methanol content in methanol-gasoline, with the coefficients of determination of cross-validation (R) improving from 0.9100 to 0.9662, the root mean square error of cross-validation (RMSE) reducing from 0.0572 to 0.0365%, the coefficients of determination of prediction set (R) improving from 0.9214 to 0.9407, the root mean square error of prediction set (RMSE) reducing from 0.0420 to 0.0382%, the variables reducing from 1044 to 43 and the modeling time reducing from 72.94 to 6.41 s. The results indicates that V-WSP-VIM coupled with RF is an effective method to improve the performance of portable laser Raman spectrometer for quantitative analysis of methanol content in methanol gasoline.

摘要

随着便携化和小型化的趋势,拉曼光谱仪需要更先进的分析方法,为原位分析提供更快速、更准确的分析性能。在这项工作中,提出了一种基于 V-WSP 和变量重要性测量(VIM)结合随机森林(RF)的混合变量选择方法,用于提高便携式激光拉曼仪器对甲醇汽油中甲醇含量的定量分析性能。首先,应用了五种预处理方法分别减少原始光谱中的感染信息。基于经过多元散射校正(MSC)处理的光谱数据,采用 V-WSP 过滤拉曼光谱中的感染或冗余信息,当相关阈值为 0.9600 时,得到 579 个变量。然后,通过 VIM 进一步消除变量。最后,通过 V-WSP-VIM 方法得到 43 个变量。在数据处理中,采用袋外(OOB)误差估计和 10 折交叉验证(CV)来优化预处理方法、V-WSP、VIM 和 RF 模型的参数。结果充分证明,与基于原始光谱的 RF 模型相比,基于 V-WSP-VIM 方法的 RF 模型可以实现对甲醇汽油中甲醇含量定量分析的更好预测性能,交叉验证的决定系数(R)从 0.9100 提高到 0.9662,交叉验证均方根误差(RMSE)从 0.0572 降低到 0.0365%,预测集的决定系数(R)从 0.9214 提高到 0.9407,预测集均方根误差(RMSE)从 0.0420 降低到 0.0382%,变量从 1044 减少到 43,建模时间从 72.94 减少到 6.41 s。结果表明,V-WSP-VIM 与 RF 结合是提高便携式激光拉曼光谱仪对甲醇汽油中甲醇含量定量分析性能的有效方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验