Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil; UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France.
UMR 7245 Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, CP52, 61 rue Buffon, Paris Cedex 05 75231, France.
J Proteomics. 2021 Mar 30;236:104118. doi: 10.1016/j.jprot.2021.104118. Epub 2021 Jan 21.
Plasmodium blood stages, responsible for human to vector transmission, termed gametocytes, are the precursor cells that develop into gametes in the mosquito. Male gametogenesis works as a bottleneck for the parasite life cycle, where, during a peculiar and rapid exflagellation, a male gametocyte produces 8 intracellular axonemes that generate by budding 8 motile gametes. Understanding the molecular mechanisms of gametogenesis is key to design strategies for controlling malaria transmission. In the rodent P. berghei, the microtubule-based motor kinesin-8B (PbKIN8B) is essential for flagellum assembly during male gametogenesis and its gene disruption impacts on completion of the parasitic life cycle. In efforts to improve our knowledge about male gametogenesis, we performed an iTRAQ-based quantitative proteomic comparison of P. berghei mutants with disrupted kinesin-8B gene (ΔPbkin8B) and wild type parasites. During the 15 min of gametogenesis, ΔPbkin8B parasites exhibited important motor protein dysregulation that suggests an essential role of PbKIN8B for the correct interaction or integration of axonemal proteins within the growing axoneme. The energy metabolism of ΔPbkin8B mutants was further affected, as well as the response to stress proteins, protein synthesis, as well as chromatin organisation and DNA processes, although endomitoses seemed to occur. SIGNIFICANCE: Malaria continues to be a global scourge, mainly in subtropical and tropical areas. The disease is caused by parasites from the Plasmodium genus. Plasmodium life cycle alternates between female Anopheles mosquitoes and vertebrate hosts through bites. Gametocytes are the parasite blood forms responsible for transmission from vertebrates to vectors. Inside the mosquito midgut, after stimulation, male and female gametocytes transform into gametes resulting in fertilization. During male gametogenesis, one gametocyte generates eight intracytoplasmic axonemes that generate, by budding, flagellated motile gametes involving a process termed exflagellation. Sexual development has a central role in ensuring malaria transmission. However, molecular data on male gametogenesis and particularly on intracytoplasmic axoneme assembly are still lacking. Since rodent malaria parasites permit the combination of in vivo and in vitro experiments and reverse genetic studies, our group investigated the molecular events in rodent P. berghei gametogenesis. The P. berghei motor ATPase kinesin-8B is proposed as an important component for male gametogenesis. We generated Pbkin8B gene-disrupted gametocytes (ΔPbkin8B) that were morphologically similar to the wild- type (WT) parasites. However, in mutants, male gametogenesis is impaired, male gametocytes are disabled in their ability to assemble axonemes and to exflagellate to release gametes, reducing fertilization drastically. Using a comparative quantitative proteomic analysis, we associated the nonfunctional axoneme of the mutants with the abnormal differential expression of proteins essential to axoneme organisation and stability. We also observed a differential dysregulation of proteins involved in protein biosynthesis and degradation, chromatin organisation and DNA processes in ΔPbkin8B parasites, although DNA condensation, mitotic spindle formation and endomitoses seem to occur. This is the first functional proteomic study of a kinesin gene-disrupted Plasmodium parasite providing new insights into Plasmodium male gametogenesis.
疟原虫血阶段,负责人类向媒介传播,称为配子体,是在蚊子中发育成配子的前体细胞。雄性配子发生是寄生虫生命周期的一个瓶颈,在此过程中,在一个特殊而快速的出芽过程中,一个雄性配子体产生 8 个细胞内轴丝,通过出芽产生 8 个能动的配子。了解配子发生的分子机制是设计控制疟疾传播策略的关键。在啮齿动物疟原虫中,基于微管的马达驱动蛋白-8B(PbKIN8B)对于雄性配子发生中的鞭毛组装是必不可少的,其基因缺失会影响寄生虫生命周期的完成。为了提高我们对雄性配子发生的认识,我们对具有缺失的驱动蛋白-8B 基因(ΔPbkin8B)的疟原虫突变体和野生型寄生虫进行了基于 iTRAQ 的定量蛋白质组比较。在 15 分钟的配子发生过程中,ΔPbkin8B 寄生虫表现出重要的运动蛋白失调,这表明 PbKIN8B 对于轴丝蛋白在生长轴丝中的正确相互作用或整合至关重要。ΔPbkin8B 突变体的能量代谢也受到了影响,应激蛋白、蛋白质合成以及染色质组织和 DNA 过程的反应也受到了影响,尽管似乎发生了有丝分裂。意义:疟疾仍然是全球性的灾难,主要发生在亚热带和热带地区。这种疾病是由疟原虫属的寄生虫引起的。疟原虫的生命周期在雌性按蚊和脊椎动物宿主之间交替进行,通过叮咬传播。配子体是负责从脊椎动物向媒介传播的寄生虫血液形式。在蚊子的中肠内,在刺激后,雄性和雌性配子体转化为配子,导致受精。在雄性配子发生过程中,一个配子体产生 8 个细胞内轴丝,通过出芽产生 8 个鞭毛状能动的配子,这一过程称为出芽。有性发育在确保疟疾传播方面起着核心作用。然而,关于雄性配子发生和特别是细胞内轴丝组装的分子数据仍然缺乏。由于啮齿动物疟原虫允许体内和体外实验以及反向遗传学研究的结合,我们小组研究了啮齿动物疟原虫配子发生中的分子事件。疟原虫的马达 ATP 酶驱动蛋白-8B 被提议作为雄性配子发生的重要组成部分。我们生成了 Pbkin8B 基因缺失的配子体(ΔPbkin8B),其形态与野生型(WT)寄生虫相似。然而,在突变体中,雄性配子发生受损,雄性配子体无法组装轴丝并出芽释放配子,大大降低了受精率。通过比较定量蛋白质组分析,我们将突变体的无功能轴丝与轴丝组织和稳定性所必需的异常差异表达蛋白相关联。我们还观察到 ΔPbkin8B 寄生虫中与蛋白质生物合成和降解、染色质组织和 DNA 过程相关的蛋白质的差异失调,尽管 DNA 浓缩、有丝分裂纺锤体形成和有丝分裂似乎发生。这是第一个对驱动蛋白基因缺失的疟原虫寄生虫进行的功能蛋白质组学研究,为疟原虫雄性配子发生提供了新的见解。