Garcia-Garin Odei, Monleón-Getino Toni, López-Brosa Pere, Borrell Asunción, Aguilar Alex, Borja-Robalino Ricardo, Cardona Luis, Vighi Morgana
Institute of Biodiversity Research (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Barcelona, Spain.
Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, Spain; BIOST(3), Spain; GRBIO (Research Group in Biostatistics and Bioinformatics), Barcelona, Spain.
Environ Pollut. 2021 Jan 11;273:116490. doi: 10.1016/j.envpol.2021.116490.
The threats posed by floating marine macro-litter (FMML) of anthropogenic origin to the marine fauna, and marine ecosystems in general, are universally recognized. Dedicated monitoring programmes and mitigation measures are in place to address this issue worldwide, with the increasing support of new technologies and the automation of analytical processes. In the current study, we developed algorithms capable of detecting and quantifying FMML in aerial images, and a web-oriented application that allows users to identify FMML within images of the sea surface. The proposed algorithm is based on a deep learning approach that uses convolutional neural networks (CNNs) capable of learning from unstructured or unlabelled data. The CNN-based deep learning model was trained and tested using 3723 aerial images (50% containing FMML, 50% without FMML) taken by drones and aircraft over the waters of the NW Mediterranean Sea. The accuracies of image classification (performed using all the images for training and testing the model) and cross-validation (performed using 90% of images for training and 10% for testing) were 0.85 and 0.81, respectively. The Shiny package of R was then used to develop a user-friendly application to identify and quantify FMML within the aerial images. The implementation of this, and similar algorithms, allows streamlining substantially the detection and quantification of FMML, providing support to the monitoring and assessment of this environmental threat. However, the automated monitoring of FMML in the open sea still represents a technological challenge, and further research is needed to improve the accuracy of current algorithms.
人为来源的漂浮海洋大型垃圾(FMML)对海洋动物以及整个海洋生态系统构成的威胁已得到普遍认可。在新技术的不断支持和分析过程自动化的背景下,全球各地都在实施专门的监测计划和缓解措施来应对这一问题。在当前的研究中,我们开发了能够检测和量化航空图像中FMML的算法,以及一个面向网络的应用程序,该程序允许用户识别海面图像中的FMML。所提出的算法基于深度学习方法,该方法使用能够从未结构化或未标记数据中学习的卷积神经网络(CNN)。基于CNN的深度学习模型使用无人机和飞机在地中海西北部水域拍摄的3723张航空图像(50%包含FMML,50%不包含FMML)进行训练和测试。图像分类(使用所有图像进行模型训练和测试)和交叉验证(使用90%的图像进行训练,10%的图像进行测试)的准确率分别为0.85和0.81。然后使用R的Shiny包开发了一个用户友好的应用程序,用于识别和量化航空图像中的FMML。这种算法以及类似算法的实施,能够大幅简化FMML的检测和量化工作,为监测和评估这一环境威胁提供支持。然而,公海中FMML的自动监测仍然是一项技术挑战,需要进一步研究以提高当前算法的准确性。