Suppr超能文献

首发精神分裂症患者预处理白质完整性异常可预测一年临床结局。

Pretreatment abnormalities in white matter integrity predict one-year clinical outcome in first episode schizophrenia.

机构信息

Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Psychoradiology Research Unit of Chinese Academy of Medical Sciences, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu 610041, China.

Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

出版信息

Schizophr Res. 2021 Feb;228:241-248. doi: 10.1016/j.schres.2020.12.011. Epub 2021 Jan 22.

Abstract

Schizophrenia is a serious mental illness for which the mainstay of treatment is antipsychotics. Up to 30% of schizophrenia patients show limited response to antipsychotics. Identifying these patients before treatment could guide individualized treatment for improving outcomes in those not likely to show robust benefit from antipsychotics. Diffusion tensor imaging was performed with 56 drug-naïve first-episode schizophrenia patients and 69 matched healthy controls. Patients were followed clinically after one-year of antipsychotic treatment and classified at that point into groups of 17 poor outcome and 39 good outcome patients based on whether they showed at least a 50% reduction of Positive and Negative Syndrome Scale (PANSS) scores from baseline. Tract-based spatial statistics were applied to assess white matter microstructure in the two patient subgroups and healthy controls. Poor outcome patients showed reduced pretreatment fractional anisotropy (FA) in left cingulum and anterior thalamic radiation and increased FA in right superior and inferior longitudinal fasciculus compared with good outcome patients. FA in each of these four tracts was decreased in both patient subgroups relative to healthy controls. Considered together, the four altered tracts showed promising ability to differentiate poor from good outcome patients (sensitivity = 74.4%, specificity = 95.2%, AUC = 0.90, p < 0.001), and superior prediction of clinical outcome to baseline PANSS scores (p < 0.015). Prediction of outcomes using DTI features was not related to duration of untreated psychosis. Baseline alterations in white matter integrity may identify schizophrenia patients less likely to respond to treatment, which could be useful information for stratification in clinical trials and for individualized treatment planning.

摘要

精神分裂症是一种严重的精神疾病,其主要治疗方法是使用抗精神病药物。高达 30%的精神分裂症患者对抗精神病药物的反应有限。在治疗前识别这些患者,可以指导个体化治疗,改善那些不太可能从抗精神病药物中获得显著获益的患者的结局。我们对 56 例未经药物治疗的首发精神分裂症患者和 69 例匹配的健康对照者进行了弥散张量成像。患者在接受抗精神病药物治疗 1 年后进行临床随访,并根据阳性和阴性症状量表(PANSS)评分基线是否至少降低 50%,将其分为 17 例预后不良和 39 例预后良好的患者。我们应用基于束流的空间统计学方法,评估了这两个患者亚组和健康对照组的白质微观结构。与预后良好的患者相比,预后不良的患者在治疗前左扣带回和前丘脑辐射的部分各向异性分数(FA)降低,右侧上、下纵束的 FA 增加。与健康对照组相比,两个患者亚组的这四个束的 FA 均降低。这四个改变的束流在区分预后不良和良好的患者方面具有良好的预测能力(灵敏度为 74.4%,特异性为 95.2%,AUC 为 0.90,p<0.001),且优于基线 PANSS 评分对临床结局的预测(p<0.015)。使用 DTI 特征预测结局与未治疗的精神病时间无关。基线时白质完整性的改变可能可以识别出不太可能对治疗有反应的精神分裂症患者,这可能是临床试验分层和个体化治疗计划的有用信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验