Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School No.321, Zhongshan Road, Nanjing, Jiangsu Province 210008, China.
Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
Acad Radiol. 2021 Nov;28 Suppl 1:S167-S178. doi: 10.1016/j.acra.2021.01.011. Epub 2021 Jan 21.
To develop and validate multivariate models integrating endoscopic biopsy, tumor markers, computed tomography (CT) morphological characteristics based on late arterial phase (LAP), and CT value-related and texture parameters to predict lymph node (LN) metastasis in gastric cancers (GCs).
The preoperative differentiation degree based on biopsy, 6 tumor markers, 8 CT morphological characteristics based on LAP, 18 CT value-related parameters, and 35 CT texture parameters of 163 patients (111 men and 52 women) with GC were analyzed retrospectively. The differences in parameters between N (-) and N (+) GCs were analyzed by the Mann-Whitney U test. Diagnostic performance was obtained by receiver operating characteristic (ROC) curve analysis. Multivariate models based on regression analysis and machine learning algorithms were performed to improve diagnostic efficacy.
The differentiation degree, carbohydrate antigen (CA) 199 and CA242, 5 CT morphological characteristics, and 22 CT texture parameters showed significant differences between N (-) and N (+) GCs in the primary cohort (all p < 0.05). The multivariate model integrating clinicopathological parameters and radiographic findings based on regression analysis achieved areas under the ROC curve (AUCs) of 0.936 and 0.912 in the primary and validation cohorts, respectively. The model generated by the support vector machine algorithm achieved AUCs of 0.914 and 0.948, respectively.
We developed and validated multivariate models integrating endoscopic biopsy, tumor markers, CT morphological characteristics based on LAP, and CT texture parameters to predict LN metastasis in GCs and achieved satisfactory performance.
开发并验证一种多变量模型,整合内镜活检、肿瘤标志物、基于晚期动脉期(LAP)的 CT 形态学特征以及 CT 值相关和纹理参数,以预测胃癌(GC)的淋巴结(LN)转移。
回顾性分析 163 例 GC 患者(男 111 例,女 52 例)的术前活检分级、6 种肿瘤标志物、8 种基于 LAP 的 CT 形态学特征、18 种 CT 值相关参数和 35 种 CT 纹理参数。采用 Mann-Whitney U 检验分析参数在 N(-)和 N(+)GC 之间的差异。通过受试者工作特征(ROC)曲线分析获得诊断性能。采用回归分析和机器学习算法构建多变量模型以提高诊断效能。
在主要队列中,分化程度、糖类抗原(CA)199 和 CA242、5 种 CT 形态学特征和 22 种 CT 纹理参数在 N(-)和 N(+)GC 之间存在显著差异(均 P < 0.05)。基于回归分析的多变量模型整合了临床病理参数和影像学表现,在主要队列和验证队列中的 ROC 曲线下面积(AUC)分别为 0.936 和 0.912。基于支持向量机算法生成的模型 AUC 分别为 0.914 和 0.948。
我们开发并验证了一种多变量模型,整合了内镜活检、肿瘤标志物、基于 LAP 的 CT 形态学特征以及 CT 纹理参数,以预测 GC 的 LN 转移,取得了令人满意的性能。