Coënon Loïs, Battistoni Arthur, Poupée-Beaugé Agathe, Germon Stéphanie, Dimier-Poisson Isabelle
Équipe BioMAP, Université de Tours, INRAe, 31 avenue Monge, 37200 Tours, France.
Med Sci (Paris). 2021 Jan;37(1):47-52. doi: 10.1051/medsci/2020259. Epub 2021 Jan 25.
Research on viruses, bacteria and protozoa-based immunotherapy has been on the rise for several years. The antitumoral efficacy of these microorganisms relies on three main mechanisms: Destruction of tumor cells, stimulation of the immune response and reprogramming of the tumor microenvironment. In order to optimize their immunotherapeutic action, these microorganisms can be genetically engineered to enhance their tumor-targeting efficacy or to vectorize immunostimulating molecules and/or antibodies. To this aim, molecular engineering allows the design of new antibody formats optimizing their functions. From whole antibodies to tandem single-chain variable fragments, various antibody formats can be vectorized by microorganisms to target receptors such as immune checkpoints or recruit immune effector cells within the tumor. Such possibilities broaden the arsenal of immunotherapeutic cancer treatment. This review focuses on these innovations and their advantages for immunotherapy.
基于病毒、细菌和原生动物的免疫疗法研究在过去几年中一直在增加。这些微生物的抗肿瘤功效依赖于三种主要机制:肿瘤细胞的破坏、免疫反应的刺激以及肿瘤微环境的重编程。为了优化它们的免疫治疗作用,可以对这些微生物进行基因工程改造,以提高它们的肿瘤靶向功效,或使免疫刺激分子和/或抗体载体化。为了实现这一目标,分子工程允许设计新的抗体形式以优化其功能。从完整抗体到串联单链可变片段,各种抗体形式可以被微生物载体化,以靶向诸如免疫检查点等受体,或在肿瘤内募集免疫效应细胞。这些可能性拓宽了免疫治疗癌症的手段。本综述重点关注这些创新及其在免疫治疗中的优势。