Suppr超能文献

无铜点击反应促进的三氮杂环丁二烯用于生物正交蛋白质功能化。

Copper-Free Click Enabled Triazabutadiene for Bioorthogonal Protein Functionalization.

机构信息

Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States.

出版信息

Bioconjug Chem. 2021 Feb 17;32(2):254-258. doi: 10.1021/acs.bioconjchem.0c00677. Epub 2021 Jan 25.

Abstract

Aryl diazonium ions have long been used in bioconjugation due to their reactivity toward electron-rich aryl residues, such as tyrosine. However, their utility in biological systems has been restricted due to the requirement of harsh conditions for their generation , as well as limited hydrolytic stability. Previous work describing a scaffold known as triazabutadiene (TBD) has shown the ability to protect aryl diazonium ions allowing for increased synthetic utility, as well as triggered release under biologically relevant conditions. Herein, we describe the synthesis and application of a novel TBD, capable of installation of a cyclooctyne on protein surfaces for later use of copper-free click reactions involving functional azides. The probe shows efficient protein labeling across a wide pH range that can be accomplished in a convenient and timely manner. Orthogonality of the cyclooctyne modification was showcased by labeling a model protein in the presence of hen egg proteins, using an azide-containing fluorophore. We further confirmed that the azobenzene modification can be cleaved using sodium dithionite treatment.

摘要

芳基重氮离子由于其对富电子芳基残基(如酪氨酸)的反应性,长期以来一直被用于生物偶联。然而,由于其生成需要苛刻的条件,以及有限的水解稳定性,它们在生物系统中的应用受到了限制。以前描述的一种名为三氮杂环丁二烯(TBD)的支架的工作表明,它能够保护芳基重氮离子,从而提高合成的实用性,并在生物相关条件下引发释放。在这里,我们描述了一种新型 TBD 的合成和应用,它能够在蛋白质表面安装环辛炔,以便以后使用涉及功能叠氮化物的无铜点击反应。该探针在很宽的 pH 范围内都能有效地标记蛋白质,并且可以方便、及时地完成。通过使用含有叠氮化物的荧光团在鸡卵清蛋白存在的情况下标记模型蛋白,展示了环辛炔修饰的正交性。我们进一步证实,使用连二亚硫酸钠处理可以切割偶氮苯修饰。

相似文献

1
Copper-Free Click Enabled Triazabutadiene for Bioorthogonal Protein Functionalization.
Bioconjug Chem. 2021 Feb 17;32(2):254-258. doi: 10.1021/acs.bioconjchem.0c00677. Epub 2021 Jan 25.
2
From mechanism to mouse: a tale of two bioorthogonal reactions.
Acc Chem Res. 2011 Sep 20;44(9):666-76. doi: 10.1021/ar200148z. Epub 2011 Aug 15.
3
Cu-Click Compatible Triazabutadienes To Expand the Scope of Aryl Diazonium Ion Chemistry.
Org Lett. 2016 Oct 7;18(19):4948-4950. doi: 10.1021/acs.orglett.6b02420. Epub 2016 Sep 13.
4
Site-Selective Aryl Diazonium Installation onto Protein Surfaces at Neutral pH using a Maleimide-Functionalized Triazabutadiene.
Chembiochem. 2023 Aug 15;24(16):e202300313. doi: 10.1002/cbic.202300313. Epub 2023 Jul 18.
5
Suzuki Coupling of Protected Aryl Diazonium Ions: Expanding the Knowledge of Triazabutadiene Compatible Reactions.
Org Lett. 2021 Mar 5;23(5):1851-1855. doi: 10.1021/acs.orglett.1c00257. Epub 2021 Feb 11.
6
Covalent protein-oligonucleotide conjugates by copper-free click reaction.
Bioorg Med Chem. 2012 Jul 15;20(14):4532-9. doi: 10.1016/j.bmc.2012.05.017. Epub 2012 May 17.
7
Liposome functionalization with copper-free "click chemistry".
J Control Release. 2015 Mar 28;202:14-20. doi: 10.1016/j.jconrel.2015.01.027. Epub 2015 Jan 24.
9
Protecting Triazabutadienes To Afford Acid Resistance.
Chembiochem. 2016 Dec 2;17(23):2220-2222. doi: 10.1002/cbic.201600517. Epub 2016 Oct 21.
10
Click chemistry for drug delivery nanosystems.
Pharm Res. 2012 Jan;29(1):1-34. doi: 10.1007/s11095-011-0568-5. Epub 2011 Sep 13.

引用本文的文献

1
Using Triazabutadienes as a Protected Source of Diazonium Cations to Facilitate Electrografting to a Variety of Conductive Surfaces.
Langmuir. 2025 Mar 25;41(11):7386-7395. doi: 10.1021/acs.langmuir.4c04848. Epub 2025 Mar 12.
2
Chemical Probes to Interrogate the Extreme Environment of Mosquito Larval Guts.
J Am Chem Soc. 2024 Mar 27;146(12):8480-8485. doi: 10.1021/jacs.3c14598. Epub 2024 Mar 14.
3
Direct Intracellular Delivery of Benzene Diazonium Ions As Observed by Increased Tyrosine Phosphorylation.
Biochemistry. 2022 Apr 19;61(8):656-664. doi: 10.1021/acs.biochem.1c00820. Epub 2022 Mar 18.
4
Protein Modification via Mild Photochemical Isomerization of Triazenes to Release Aryl Diazonium Ions.
Bioconjug Chem. 2021 Nov 17;32(11):2432-2438. doi: 10.1021/acs.bioconjchem.1c00459. Epub 2021 Nov 3.

本文引用的文献

1
Tyrosine bioconjugation - an emergent alternative.
Org Biomol Chem. 2020 Nov 28;18(44):9018-9028. doi: 10.1039/d0ob01912g. Epub 2020 Nov 3.
2
Tyrosine Conjugation Methods for Protein Labelling.
Chemistry. 2020 Nov 11;26(63):14257-14269. doi: 10.1002/chem.202001992. Epub 2020 Sep 23.
4
Coumarin Triazabutadienes for Fluorescent Labeling of Proteins.
Chembiochem. 2018 Dec 18;19(24):2550-2552. doi: 10.1002/cbic.201800599. Epub 2018 Nov 15.
5
Chemoselective Tyrosine Bioconjugation through Sulfate Click Reaction.
Chemistry. 2018 Aug 1;24(43):10948-10952. doi: 10.1002/chem.201802380. Epub 2018 Jul 18.
6
Site-Selective Cysteine-Cyclooctyne Conjugation.
Angew Chem Int Ed Engl. 2018 May 28;57(22):6459-6463. doi: 10.1002/anie.201800860. Epub 2018 Apr 26.
7
Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide-Alkyne Cycloaddition.
Bioconjug Chem. 2018 Mar 21;29(3):686-701. doi: 10.1021/acs.bioconjchem.7b00633. Epub 2018 Feb 1.
8
Engineering Nanodisc Scaffold Proteins for Native Mass Spectrometry.
Anal Chem. 2017 Nov 7;89(21):11189-11192. doi: 10.1021/acs.analchem.7b03569. Epub 2017 Oct 23.
9
A Chemoselective Rapid Azo-Coupling Reaction (CRACR) for Unclickable Bioconjugation.
J Am Chem Soc. 2017 Aug 30;139(34):11670-11673. doi: 10.1021/jacs.7b05125. Epub 2017 Aug 16.
10
Protecting Triazabutadienes To Afford Acid Resistance.
Chembiochem. 2016 Dec 2;17(23):2220-2222. doi: 10.1002/cbic.201600517. Epub 2016 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验