Suppr超能文献

通过叠氮-炔环加成进行生物缀合的实际考虑、挑战和局限性。

Practical Considerations, Challenges, and Limitations of Bioconjugation via Azide-Alkyne Cycloaddition.

机构信息

Department of Pharmaceutical Chemistry , University of Kansas , 2095 Constant Avenue , Lawrence , Kansas 66047 , United States.

Department of Chemistry , University of Kansas , 1251 Wescoe Hall Drive , Lawrence , Kansas 66047 , United States.

出版信息

Bioconjug Chem. 2018 Mar 21;29(3):686-701. doi: 10.1021/acs.bioconjchem.7b00633. Epub 2018 Feb 1.

Abstract

Interrogating biological systems is often limited by access to biological probes. The emergence of "click chemistry" has revolutionized bioconjugate chemistry by providing facile reaction conditions amenable to both biologic molecules and small molecule probes such as fluorophores, toxins, or therapeutics. One particularly popular version is the copper-catalyzed azide-alkyne cycloaddition (AAC) reaction, which has spawned new alternatives such as the strain-promoted azide-alkyne cycloaddition reaction, among others. This focused review highlights practical approaches to AAC reactions for the synthesis of peptide or protein bioconjugates and contrasts current challenges and limitations in light of recent advances in the field. The conical success of antibody drug conjugates has expanded the toolbox of linkers and payloads to facilitate practical applications of bioconjugation to create novel therapeutics and biologic probes. The AAC reaction in particular is poised to enable a large set of functionalized molecules as a combinatorial approach to high-throughput bioconjugate generation, screening, and honing of lead compounds.

摘要

研究生物系统通常受到生物探针获取的限制。“点击化学”的出现通过提供适用于生物分子和小分子探针(如荧光团、毒素或治疗剂)的简便反应条件,彻底改变了生物缀合化学。一种特别流行的版本是铜催化的叠氮-炔环加成(AAC)反应,它催生了应变促进的叠氮-炔环加成反应等新的替代品。本综述重点介绍了用于合成肽或蛋白质生物缀合物的 AAC 反应的实用方法,并根据该领域的最新进展,对比了当前的挑战和局限性。抗体药物偶联物的成功应用拓展了连接子和有效载荷的工具包,以促进生物缀合在创造新型治疗剂和生物探针方面的实际应用。特别是 AAC 反应有望使一系列功能化分子成为高通量生物缀合生成、筛选和先导化合物优化的组合方法。

相似文献

5
Cucurbit[6]uril-Promoted Click Chemistry for Protein Modification.葫芦脲促进的点击化学用于蛋白质修饰。
J Am Chem Soc. 2017 Jul 19;139(28):9691-9697. doi: 10.1021/jacs.7b05164. Epub 2017 Jul 7.
6
Copper Catalysis in Living Systems and In Situ Drug Synthesis.铜催化在活体系统中的应用和原位药物合成。
Angew Chem Int Ed Engl. 2016 Dec 12;55(50):15662-15666. doi: 10.1002/anie.201609837. Epub 2016 Nov 15.
7
A Hitchhiker's Guide to Click-Chemistry with Nucleic Acids.核酸点击化学入门指南
Chem Rev. 2021 Jun 23;121(12):7122-7154. doi: 10.1021/acs.chemrev.0c00928. Epub 2021 Jan 14.

引用本文的文献

2
New Approach to Assembling Nucleic Acid Dendrons on a Solid Phase.在固相上组装核酸树枝状分子的新方法。
Org Lett. 2025 Aug 29;27(34):9500-9505. doi: 10.1021/acs.orglett.5c02877. Epub 2025 Aug 20.
3
Advancing Covalent Ligand and Drug Discovery beyond Cysteine.超越半胱氨酸推进共价配体与药物发现
Chem Rev. 2025 Jul 23;125(14):6653-6684. doi: 10.1021/acs.chemrev.5c00001. Epub 2025 May 22.
6
Comparative Study of Click Handle Stability in Common Ligation Conditions.常见结扎条件下夹扣手柄稳定性的对比研究
Bioconjug Chem. 2025 May 21;36(5):1054-1065. doi: 10.1021/acs.bioconjchem.5c00095. Epub 2025 Apr 27.
8
Surface Functionalization of Elastomers with Biopolymers.生物聚合物对弹性体的表面功能化
Methods Mol Biol. 2025;2902:197-227. doi: 10.1007/978-1-0716-4402-7_13.

本文引用的文献

3
Targeting the N terminus for site-selective protein modification.靶向 N 端用于位点选择性蛋白质修饰。
Nat Chem Biol. 2017 Jul;13(7):697-705. doi: 10.1038/nchembio.2416. Epub 2017 Jun 20.
8
Strategies and challenges for the next generation of antibody-drug conjugates.下一代抗体药物偶联物的策略与挑战。
Nat Rev Drug Discov. 2017 May;16(5):315-337. doi: 10.1038/nrd.2016.268. Epub 2017 Mar 17.
10
Selective in vivo metabolic cell-labeling-mediated cancer targeting.选择性体内代谢细胞标记介导的癌症靶向
Nat Chem Biol. 2017 Apr;13(4):415-424. doi: 10.1038/nchembio.2297. Epub 2017 Feb 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验