Suppr超能文献

具有纳米结构电极的高性能、热循环稳定、耐焦化固体氧化物燃料电池

High-Performance, Thermal Cycling Stable, Coking-Tolerant Solid Oxide Fuel Cells with Nanostructured Electrodes.

作者信息

Zhang Weilin, Zhou Yucun, Hussain A Mohammed, Song Dong, Miura Yohei, Chen Yu, Luo Zheyu, Kane Nicholas, Niu Yinghua, Dale Nilesh, Fukuyama Yosuke, Liu Meilin

机构信息

School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Dr. NW, Atlanta, Georgia 30332-0245, United States.

Nissan Technical Center North America (NTCNA), Farmington Hills, Michigan 48335, United States.

出版信息

ACS Appl Mater Interfaces. 2021 Feb 3;13(4):4993-4999. doi: 10.1021/acsami.0c18434. Epub 2021 Jan 25.

Abstract

Solid oxide fuel cells (SOFCs) are a promising solution to a sustainable energy future. However, cell performance and stability remain a challenge. Durable, nanostructured electrodes fabricated via a simple, cost-effective method are an effective way to address these problems. In this work, both the nanostructured PrBaSrCoFeO (PBSCF) cathode and Ni-CeSmO (SDC) anode are fabricated on a porous yttria-stabilized zirconia (YSZ) backbone via solution infiltration. Symmetrical cells with a configuration of PBSCF|YSZ|PBSCF show a low interfacial polarization resistance of 0.03 Ω cm with minimal degradation at 700 °C for 600 h. Ni-SDC|YSZ|PBSCF single cells exhibit a peak power density of 0.62 W cm at 650 °C operated on H with good thermal cycling stability for 110 h. Single cells also show excellent coking tolerance with stable operation on CH for over 120 h. This work offers a promising pathway toward the development of high-performance and durable SOFCs to be powered by natural gas.

摘要

固体氧化物燃料电池(SOFCs)是实现可持续能源未来的一种有前景的解决方案。然而,电池性能和稳定性仍然是一个挑战。通过简单、经济高效的方法制造的耐用纳米结构电极是解决这些问题的有效途径。在这项工作中,通过溶液浸渍法在多孔氧化钇稳定的氧化锆(YSZ)骨架上制备了纳米结构的PrBaSrCoFeO(PBSCF)阴极和Ni-CeSmO(SDC)阳极。具有PBSCF|YSZ|PBSCF结构的对称电池在700°C下600小时内显示出低至0.03Ω·cm的界面极化电阻,且降解极小。Ni-SDC|YSZ|PBSCF单电池在650°C下以氢气运行时表现出0.62W/cm²的峰值功率密度,并具有良好的热循环稳定性,可稳定运行110小时。单电池在甲烷上稳定运行超过120小时,还表现出优异的抗积碳性能。这项工作为开发由天然气供电的高性能、耐用SOFCs提供了一条有前景的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验