Suppr超能文献

电极渗透的纳米工程:开发具有高功率密度的大面积固体氧化物燃料电池的契机。

Nanoengineering of electrodes infiltration: an opportunity for developing large-area solid oxide fuel cells with high power density.

作者信息

Tong Xiaofeng, Li Chen, Xu Kaikuo, Wang Ningling, Brodersen Karen, Yang Zhibin, Chen Ming

机构信息

Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China.

Department of Energy Conversion and Storage, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.

出版信息

Nanoscale. 2023 Oct 20;15(40):16362-16370. doi: 10.1039/d3nr02704j.

Abstract

Although nanoengineering of electrodes opens up the way to the development of solid oxide fuel cells (SOFCs) with improved performance, the practical implementation of such advances in cells suitable for widespread use remains a challenge. Here, the demonstration of large-area, commercially relevant SOFCs with two nanoengineered electrodes that display excellent performance is reported. The self-assembled nanocomposite LaSrCoO and CoO is strategically designed and deposited into the well-interconnected CeGdO backbone as a cathode to enable an ultra-large electrochemically active region. The nanometer-scale CeGdO is deposited into a conventional Ni/yttria-stabilized zirconia (YSZ) anode to provide more active oxygen exchange kinetics and electronic conductivity compared to YSZ. The resulting nanoengineered cell with an effective size of 4 cm × 4 cm delivers a remarkable power output of 19.2 W per single cell at 0.6 V and 750 °C. These advancements have potential to facilitate the future development of high-performance SOFCs at a large scale by nanoengineering of electrodes and are expected to pave the way for the commercialization of this technology.

摘要

尽管电极的纳米工程为开发性能更优的固体氧化物燃料电池(SOFC)开辟了道路,但在适用于广泛应用的电池中实际应用这些进展仍然是一项挑战。在此,报道了具有两个表现出优异性能的纳米工程电极的大面积、具有商业相关性的SOFC的演示。自组装纳米复合材料LaSrCoO和CoO经过精心设计,并沉积到相互连接良好的CeGdO骨架中作为阴极,以实现超大的电化学活性区域。纳米级CeGdO沉积到传统的Ni/氧化钇稳定的氧化锆(YSZ)阳极中,与YSZ相比,可提供更活跃的氧交换动力学和电子传导性。所得有效尺寸为4 cm×4 cm的纳米工程电池在0.6 V和750°C时每个单电池的功率输出高达19.2 W。这些进展有可能通过电极的纳米工程促进高性能SOFC未来的大规模发展,并有望为该技术的商业化铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验