Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; and.
Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.
Am J Respir Cell Mol Biol. 2021 Apr;64(4):453-464. doi: 10.1165/rcmb.2020-0396OC.
Fibroblast activation is transient in successful wound repair but persistent in fibrotic pathologies. Understanding fibroblast deactivation during successful wound healing may provide new approaches to therapeutically reverse fibroblast activation. To characterize the gene programs that accompany fibroblast activation and reversal during lung fibrosis resolution, we used RNA sequencing analysis of flow sorted Col1α1-GFP-positive and CD45-, CD31-, and CD326-negative cells isolated from the lungs of young mice exposed to bleomycin. We compared fibroblasts isolated from control mice with those isolated at Days 14 and 30 after bleomycin exposure, representing the peak of extracellular matrix deposition and an early stage of fibrosis resolution, respectively. Bleomycin exposure dramatically altered fibroblast gene programs at Day 14. Principal component and differential gene expression analyses demonstrated the predominant reversal of these trends at Day 30. Upstream regulator and pathway analyses of reversing "resolution" genes identified novel candidate antifibrotic genes and pathways. Two genes from these analyses that were decreased in expression at Day 14 and reversed at Day 30, Aldh2 and Nr3c1, were selected for further analysis. Enhancement of endogenous expression of either gene by CRISPR activation in cultured human idiopathic pulmonary fibrosis fibroblasts was sufficient to reduce profibrotic gene expression, fibronectin deposition, and collagen gel compaction, consistent with roles for these genes in fibroblast deactivation. This combination of RNA sequencing analysis of freshly sorted fibroblasts and hypothesis testing in cultured idiopathic pulmonary fibrosis fibroblasts offers a path toward identification of novel regulators of lung fibroblast deactivation, with potential relevance to understanding fibrosis resolution and its failure in human disease.
成纤维细胞的激活在成功的伤口修复中是短暂的,但在纤维化病变中是持久的。了解成纤维细胞在成功的伤口愈合过程中的失活可能为治疗性逆转成纤维细胞激活提供新的方法。为了描述伴随肺纤维化消退过程中成纤维细胞激活和逆转的基因程序,我们使用 RNA 测序分析了从小鼠暴露于博来霉素的肺部分离的 Col1α1-GFP 阳性和 CD45、CD31 和 CD326 阴性细胞的流式分选。我们将从对照小鼠中分离的成纤维细胞与从博来霉素暴露后第 14 天和第 30 天分离的成纤维细胞进行了比较,分别代表细胞外基质沉积的高峰和纤维化消退的早期阶段。博来霉素暴露在第 14 天显著改变了成纤维细胞的基因程序。主成分和差异基因表达分析表明,这些趋势在第 30 天主要逆转。对逆转“消退”基因的上游调节剂和途径分析确定了新的候选抗纤维化基因和途径。这些分析中两个在第 14 天表达降低且在第 30 天逆转的基因,Aldh2 和 Nr3c1,被选为进一步分析。CRISPR 激活在培养的特发性肺纤维化成纤维细胞中增强内源性表达这两个基因中的任何一个,都足以降低致纤维化基因的表达、纤维连接蛋白沉积和胶原凝胶压实,这与这些基因在成纤维细胞失活中的作用一致。这种对新鲜分选的成纤维细胞进行 RNA 测序分析与在培养的特发性肺纤维化成纤维细胞中进行假设检验的结合,为鉴定肺成纤维细胞失活的新调节剂提供了一种途径,这可能与理解纤维化消退及其在人类疾病中的失败有关。