Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 Japan.
Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, 657-8501 Japan.
Plant Cell Physiol. 2021 Jul 17;62(3):472-481. doi: 10.1093/pcp/pcab006.
Photosynthesis with highly photoreactive chlorophyll (Chl) provides energy for plant growth but with simultaneous risk of photooxidative damage and photoprotection costs. Although the leafless orchid Cymbidium macrorhizon mostly depends on mycorrhizal fungi for carbon, it accumulates Chl particularly during fruiting and may not be fully mycoheterotrophic. In fact, stable isotopic analysis suggested that the fruiting C. macrorhizon specimens obtain a significant proportion of its carbon demands through photosynthesis. However, actual photosynthetic characteristics of this leafless orchid are unknown. To reveal the functionality of photosynthetic electron transport in C. macrorhizon, we compared its photosynthetic properties with those of its relative mixotrophic orchid Cymbidium goeringii and the model plant Arabidopsis thaliana. Compared with C. goeringii and A. thaliana, maximum photochemical efficiency of PSII was substantially low in C. macrorhizon. Chl fluorescence induction kinetics revealed that the electron transport capacity of PSII was limited in C. macrorhizon. Chl fluorescence analysis at 77 K suggested partial energetic disconnection of the light-harvesting antenna from the PSII reaction center in C. macrorhizon. Despite its low PSII photochemical efficiency, C. macrorhizon showed photosynthetic electron transport activity both in the field and under laboratory conditions. Cymbidium macrorhizon developed strong nonphotochemical quenching in response to increased light intensity as did C. goeringii, suggesting the functionality of photoprotective systems in this orchid. Moreover, C. macrorhizon fruit developed stomata on the pericarp and showed net O2-evolving activity. Our data demonstrate that C. macrorhizon can perform photosynthetic electron transport in the pericarp, although its contribution to net carbon acquisition may be limited.
具有高光反应性叶绿素 (Chl) 的光合作用为植物生长提供能量,但同时也存在光氧化损伤和光保护成本的风险。尽管无叶兰花 Cymbidium macrorhizon 主要依赖菌根真菌获取碳,但它在结果期会积累 Chl,可能不完全是菌养异养的。事实上,稳定同位素分析表明,结果期的 C. macrorhizon 标本通过光合作用获得了其碳需求的很大一部分。然而,这种无叶兰花的实际光合作用特征尚不清楚。为了揭示 C. macrorhizon 光合作用电子传递的功能,我们将其光合作用特性与相对混合营养型兰花 Cymbidium goeringii 和模式植物拟南芥进行了比较。与 C. goeringii 和 A. thaliana 相比,C. macrorhizon 的 PSII 最大光化学效率显著较低。Chl 荧光诱导动力学表明,C. macrorhizon 中的 PSII 电子传递能力受到限制。在 77K 时的 Chl 荧光分析表明,C. macrorhizon 中的光捕获天线与 PSII 反应中心部分能量脱耦。尽管 PSII 光化学效率较低,但 C. macrorhizon 在田间和实验室条件下均表现出光合作用电子传递活性。C. macrorhizon 与 C. goeringii 一样,在增加光强时表现出强烈的非光化学猝灭,表明这种兰花具有光保护系统的功能。此外,C. macrorhizon 果实的果皮上形成了气孔,并表现出净 O2 释放活性。我们的数据表明,尽管 C. macrorhizon 对净碳获取的贡献可能有限,但它可以在果皮中进行光合作用电子传递。