CHU de Limoges, Service de Biochimie et Génétique Moléculaire, F-87000, Limoges, France; Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France.
Université de Limoges, Faculté de Médecine, Maintenance Myélinique et Neuropathies Périphériques, EA6309, F-87000, Limoges, France.
Exp Eye Res. 2021 Mar;204:108462. doi: 10.1016/j.exer.2021.108462. Epub 2021 Jan 23.
The cornea is a multi-layered structure which allows fine refraction and provides both resistance to external insults and adequate transparency. The corneal endothelium ensures stromal hydration, failure of which, such as in Fuchs endothelial corneal dystrophy, after trauma or in aging, may lead to loss of corneal transparency and induce blindness. Currently, no efficient therapeutic alternatives exist except for corneal grafting. Thus corneal tissue engineering represents a valuable alternative approach, which may overcome cornea donor shortage. Several studies describe protocols to isolate, differentiate, and cultivate corneal endothelial cells (CEnCs) in vitro. Two main in vitro strategies can be described: expansion of eye-native cell populations, such as CEnCs, or the production and expansion of CEnCs from non-eye native cell populations, such as induced Pluripotent Stem Cells (iPSCs). The challenge with these cells is to obtain a monolayer of CEnCs on a biocompatible carrier, with a specific morphology (flat hexagonal cells), and with specific functions such as programmed cell cycle arrest. Another issue for this cell culture methodology is to define the adapted protocol (media, trophic factors, timeframe) that can mimic physiological development. Additionally, contamination by other cell types still represents a huge problem. Thus, purification methods, such as Fluorescence Activated Cell Sorting (FACS), Magnetic Ativated Cell Sorting (MACS) or Sedimentation Field Flow Fractionation (SdFFF) are useful. Animal models are also crucial to provide a translational approach for these therapies, integrating macro- and microenvironment influences, systemic hormonal or immune responses, and exogenous interactions. Non-eye native cell graft protocols are constantly improving both in efficacy and safety, with the aim of being the most suitable candidate for corneal therapies in future routine practice. The aim of this work is to review these different aspects with a special focus on issues facing CEnC culture in vitro, and to highlight animal graft models adapted to screen the efficacy of these different protocols.
角膜是一种多层结构,可实现精细折射,并提供对外界刺激的抵抗力和足够的透明度。角膜内皮细胞确保基质水合,创伤后或衰老时,如 Fuchs 内皮角膜营养不良,这种水合作用的失败可能导致角膜透明度丧失,并导致失明。目前,除了角膜移植外,尚无有效的治疗替代方法。因此,角膜组织工程代表了一种有价值的替代方法,可能克服角膜供体短缺的问题。有几项研究描述了分离、分化和体外培养角膜内皮细胞(CEnC)的方案。可以描述两种主要的体外策略:扩大眼固有细胞群体,如 CEnC,或从非眼固有细胞群体,如诱导多能干细胞(iPSC)生产和扩大 CEnC。这些细胞的挑战是在生物相容性载体上获得单层 CEnC,具有特定的形态(扁平六边形细胞),并且具有特定的功能,如程序性细胞周期停滞。这种细胞培养方法的另一个问题是定义适应的方案(培养基、营养因子、时间范围),以模拟生理发育。此外,其他细胞类型的污染仍然是一个巨大的问题。因此,纯化方法,如荧光激活细胞分选(FACS)、磁激活细胞分选(MACS)或沉降场流分离(SdFFF)是有用的。动物模型对于这些疗法的转化方法也至关重要,整合宏观和微观环境影响、全身激素或免疫反应以及外源性相互作用。非眼固有细胞移植物方案在疗效和安全性方面都在不断提高,目的是成为未来常规实践中角膜治疗的最合适候选者。本工作的目的是综述这些不同方面,特别关注体外培养 CEnC 面临的问题,并强调适应这些不同方案的筛选功效的动物移植物模型。